In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flo...In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flow field and velocity field around the hoist equipment during its moving process, and analyzed the airflow around single and couple hoist equipment as well as decisive range of piston effect and additional effect of hoist equipment to ventilation system. Research conclusion indicate that during hoist equipment movement, airflow pattern changes repeatedly because of the influence of pis-ton effect from hoist equipment, and the study of airflow stability in shaft is the foundation for the stability of ventilation in mine.展开更多
A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize...A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value(50 m·s-1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.展开更多
A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is e...A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.展开更多
A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian me...A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.展开更多
The stability of branched airflow of ventilation network is guarantee of safety in production of coal mine. Two indexes which stand for the stability of branches of ventilation network in coal mine were put forward in...The stability of branched airflow of ventilation network is guarantee of safety in production of coal mine. Two indexes which stand for the stability of branches of ventilation network in coal mine were put forward in this paper, that are airflow intensity and sta- bility index of branched airflow, The airflow stability of working place was divided into different grade according to the stability index. The conclusion has great significance for safety in production of coal mine.展开更多
According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mi...According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire.展开更多
A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compres...A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compressor stability.Different geometric structures of micro tip injection have been investigated,including the axial positions of injector port,injected mass flow rate and injector diameter.First,seven designed micro tip injection structures and one solid wall casing are tested in the compressor test rig to elucidate the influence of different micro tip injection parameters on the compressor stability.Then,numerical simulations are conducted to analyze the underlying flow mechanisms of micro tip injection with different design parameters on enhancing the compressor stability.The experimental and numerical investigation reveal that when the injection port is located upstream of the low-speed region,the compressor stability is significantly enhanced.The tip injection with larger injected mass flow can obtain higher stall margin improvement.Smaller injector diameter produces higher injection momentum and velocity,contributing to greater improvement on the compressor stability.展开更多
This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic ...This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic instability in compressors. Three topics are covered in the paper, which appeared as the major themes towards the goal of stability enhancement. The first topic is the pre-stall behavior of rotating stall, which plays a vital role in designing the control scheme and discovering the convenient route to find the causal factors of flow disturbances potentially leading to stall. The second topic is the mechanism of blade passage flow during stall and its inception, which is the basic knowledge needed to manipulate the blade design for the stability improvement and eventually to predict the unsteady performance of the compressor system. The third topic is the recent trend of the control strategy based on the learning of active vs. passive methods. To introduce to the discussion of these topics, a brief description of the history of the recent development is given at the beginning of the paper. In discussing each topic, future works are also highlighted to enhance the further development of this long-standing problem in turbomachinery research and application.展开更多
Casing treatment is one possible way of regaining axial compressor operating range. However, most of casing treatments extend the operating range with the cost of efficiency penalty. A new form of multiple cylindrical...Casing treatment is one possible way of regaining axial compressor operating range. However, most of casing treatments extend the operating range with the cost of efficiency penalty. A new form of multiple cylindrical holes casing treatment(MHCT) with pre-swirl blowing for the NASA Rotor-37 has been designed based on profound understanding of the stall inception. Unsteady numerical simulations have been performed for Rotor-37 with and without MHCT. Parametric studies of the total extraction holes area and their axial locations show that the compressor performance deteriorates as the area ratio increases but the stall margin is extended and there is an optimum extraction holes axial location for stall margin extending. The better configuration of MHCT could extend the stall margin by 6.2% with only 0.23% peak efficiency reduction. Detailed analysis of the physical mechanism behind the stall margin improvement shows that the casing treatment could eliminate the passage blockage by suppressing breakup of tip leakage vortex and decrease the blade load in tip region, which both contribute to improve stall margin of transonic axial compressors.展开更多
A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolated axial compressor rotor is presented, intending to better understand the flow mechanism behind stall...A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolated axial compressor rotor is presented, intending to better understand the flow mechanism behind stall control measures that act on tip clearance flow. Under the influence of injection the unsteadiness of self-induced tip clearance flow could be weakened. Also the radial migration of tip clearance vortex is confined to a smaller radial extent near the rotor tip and the trajectory of tip clearance flow is pushed more downstream. So the injection is beneficial to improve compressor stability and increase static pressure rise near rotor tip region. The results of injection with different injected mass flow rates show that for the special type of injector adopted in the paper the effect of injection on tip clearance flow may be different according to the relative strength between these two streams of flow. For a fixed injected mass flow rate, reducing the injector area to increase injection velocity can improve the effect of injection on tip clearance flow and thus the compressor stability. A comparison of calculations between single blade passage and multiple blade passages validates the utility of single passage computations to investigate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tip injection.展开更多
The main objective of the present experimental study is to analyze the turbulent structure in humid airnon-premixed flame, and determine the effect of humidity on the flow field and the flame stability limit in turbul...The main objective of the present experimental study is to analyze the turbulent structure in humid airnon-premixed flame, and determine the effect of humidity on the flow field and the flame stability limit in turbulentnon-premixed flame. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance ofvortex structures and obtain the quantitative velocity field. The distributions of Reynolds shear stress, mean androot-mean squared fluctuating (rms) velocities are examined to get insight into the effect of fuel-to-air velocity ratioon velocity flow field. The results show that with steam addition, the air-driven vortex in the bluff-body wakeis thinner; the biggest peaks of rms velocity and Reynolds shear stress are lower; the distance between the peaksof rms velocity on the sides of centerline reduces. Besides these, the flame stability is affected. Both central fuelpenetration limit and partially quenching limit reduce with steam addition.展开更多
A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8ram and the front blockage is about 8%. The charac...A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8ram and the front blockage is about 8%. The characteristic of this strut is that extra oxygen can be injected through a set of orifices at the back of the strut, which can change the local flow field structure and ER (Equivalence Ratio). Based on the above mentioned strut, a stable local flame is generated at the back of the strut and the main combustion can be organized around this local fire. Nu- merical simulation is conducted to compare the local flow field distribution at the back of the strut with/without extra oxygen injection. Experiments are conducted to test the combustion characteristics based on this fuel injec- tion and flame holding strategy. The temperature distribution which can reflect the local flame characteristic has been measured in the experiments conducted under cold incoming supersonic air flow condition. In addition, the overall combustion performance in a full-scale supersonic combustor has been evaluated in the experiments con- ducted under hot incoming supersonic air flow condition. Results show that this strut strategy is very promising since it can organize stable supersonic combustion at the center of the combustor without any cavity or rearward facing step. Besides that, even with the 8ram thick strut, the combustion can be stable in a wide range of ER from 0.25-1 by using liquid room-temperature kerosene.展开更多
基金Supported by Natural Science Foundation of China (50474062) and State Administration of Coal Mine Safety of China (04-233)
文摘In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flow field and velocity field around the hoist equipment during its moving process, and analyzed the airflow around single and couple hoist equipment as well as decisive range of piston effect and additional effect of hoist equipment to ventilation system. Research conclusion indicate that during hoist equipment movement, airflow pattern changes repeatedly because of the influence of pis-ton effect from hoist equipment, and the study of airflow stability in shaft is the foundation for the stability of ventilation in mine.
基金Supported by the National Natural Science Foundation of China(51276011)the National High Technology Research and Development Program of China(2013AA065303)+1 种基金Beijing Municipal Natural Science Foundation of China(3132016)the Opening Foundation of State Key Laboratory of Engines(K2013-3)
文摘A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value(50 m·s-1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.
基金Supported by the National Natural Science Foundation of China (No.50521604) and Shanghai Jiao Tong University Young Teacher Foundation.
文摘A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 502047 and No. M503094)National Basic Research Program of China (No. 2003CB214500).
文摘A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.
文摘The stability of branched airflow of ventilation network is guarantee of safety in production of coal mine. Two indexes which stand for the stability of branches of ventilation network in coal mine were put forward in this paper, that are airflow intensity and sta- bility index of branched airflow, The airflow stability of working place was divided into different grade according to the stability index. The conclusion has great significance for safety in production of coal mine.
基金Supported by the International Science and Technology Cooperation Projects(2009DFA71840)Basic Research Business Projects of China Academy of Safety Science and Technology(2009JBKY07)
文摘According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire.
基金supported by National Natural Science Foundation of China(No.52076179)National Science and Technology Major Projects of China(No.J2019-I-0011).
文摘A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compressor stability.Different geometric structures of micro tip injection have been investigated,including the axial positions of injector port,injected mass flow rate and injector diameter.First,seven designed micro tip injection structures and one solid wall casing are tested in the compressor test rig to elucidate the influence of different micro tip injection parameters on the compressor stability.Then,numerical simulations are conducted to analyze the underlying flow mechanisms of micro tip injection with different design parameters on enhancing the compressor stability.The experimental and numerical investigation reveal that when the injection port is located upstream of the low-speed region,the compressor stability is significantly enhanced.The tip injection with larger injected mass flow can obtain higher stall margin improvement.Smaller injector diameter produces higher injection momentum and velocity,contributing to greater improvement on the compressor stability.
文摘This paper reviews the development in the research of flow instability and its control over the recent ten or more years. This development was largely stimulated by the novel idea of active control of the aerodynamic instability in compressors. Three topics are covered in the paper, which appeared as the major themes towards the goal of stability enhancement. The first topic is the pre-stall behavior of rotating stall, which plays a vital role in designing the control scheme and discovering the convenient route to find the causal factors of flow disturbances potentially leading to stall. The second topic is the mechanism of blade passage flow during stall and its inception, which is the basic knowledge needed to manipulate the blade design for the stability improvement and eventually to predict the unsteady performance of the compressor system. The third topic is the recent trend of the control strategy based on the learning of active vs. passive methods. To introduce to the discussion of these topics, a brief description of the history of the recent development is given at the beginning of the paper. In discussing each topic, future works are also highlighted to enhance the further development of this long-standing problem in turbomachinery research and application.
基金Financial support from the National Natural Science Foundation of China(Project No.51176187 and 51206163)International special cooperation projects(Project No.2014DFR70080)
文摘Casing treatment is one possible way of regaining axial compressor operating range. However, most of casing treatments extend the operating range with the cost of efficiency penalty. A new form of multiple cylindrical holes casing treatment(MHCT) with pre-swirl blowing for the NASA Rotor-37 has been designed based on profound understanding of the stall inception. Unsteady numerical simulations have been performed for Rotor-37 with and without MHCT. Parametric studies of the total extraction holes area and their axial locations show that the compressor performance deteriorates as the area ratio increases but the stall margin is extended and there is an optimum extraction holes axial location for stall margin extending. The better configuration of MHCT could extend the stall margin by 6.2% with only 0.23% peak efficiency reduction. Detailed analysis of the physical mechanism behind the stall margin improvement shows that the casing treatment could eliminate the passage blockage by suppressing breakup of tip leakage vortex and decrease the blade load in tip region, which both contribute to improve stall margin of transonic axial compressors.
基金This work was supported by National Natural Science Foundation of China with project No.50406027.This support is gratefully acknowledged.
文摘A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolated axial compressor rotor is presented, intending to better understand the flow mechanism behind stall control measures that act on tip clearance flow. Under the influence of injection the unsteadiness of self-induced tip clearance flow could be weakened. Also the radial migration of tip clearance vortex is confined to a smaller radial extent near the rotor tip and the trajectory of tip clearance flow is pushed more downstream. So the injection is beneficial to improve compressor stability and increase static pressure rise near rotor tip region. The results of injection with different injected mass flow rates show that for the special type of injector adopted in the paper the effect of injection on tip clearance flow may be different according to the relative strength between these two streams of flow. For a fixed injected mass flow rate, reducing the injector area to increase injection velocity can improve the effect of injection on tip clearance flow and thus the compressor stability. A comparison of calculations between single blade passage and multiple blade passages validates the utility of single passage computations to investigate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tip injection.
基金supported by a Grant-in-Aid for Scientific Research through research grant number 2007CB210102 from State Key Fundamental Researeh Program of China.
文摘The main objective of the present experimental study is to analyze the turbulent structure in humid airnon-premixed flame, and determine the effect of humidity on the flow field and the flame stability limit in turbulentnon-premixed flame. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance ofvortex structures and obtain the quantitative velocity field. The distributions of Reynolds shear stress, mean androot-mean squared fluctuating (rms) velocities are examined to get insight into the effect of fuel-to-air velocity ratioon velocity flow field. The results show that with steam addition, the air-driven vortex in the bluff-body wakeis thinner; the biggest peaks of rms velocity and Reynolds shear stress are lower; the distance between the peaksof rms velocity on the sides of centerline reduces. Besides these, the flame stability is affected. Both central fuelpenetration limit and partially quenching limit reduce with steam addition.
基金supported by National Natural Science Foundation of China(No.90816028)National Science Fund for Distinguished Young Scholars of China(No.50925625)
文摘A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8ram and the front blockage is about 8%. The characteristic of this strut is that extra oxygen can be injected through a set of orifices at the back of the strut, which can change the local flow field structure and ER (Equivalence Ratio). Based on the above mentioned strut, a stable local flame is generated at the back of the strut and the main combustion can be organized around this local fire. Nu- merical simulation is conducted to compare the local flow field distribution at the back of the strut with/without extra oxygen injection. Experiments are conducted to test the combustion characteristics based on this fuel injec- tion and flame holding strategy. The temperature distribution which can reflect the local flame characteristic has been measured in the experiments conducted under cold incoming supersonic air flow condition. In addition, the overall combustion performance in a full-scale supersonic combustor has been evaluated in the experiments con- ducted under hot incoming supersonic air flow condition. Results show that this strut strategy is very promising since it can organize stable supersonic combustion at the center of the combustor without any cavity or rearward facing step. Besides that, even with the 8ram thick strut, the combustion can be stable in a wide range of ER from 0.25-1 by using liquid room-temperature kerosene.