基于贝叶斯网络构建贝叶斯加权模型,进行重症监护病房(Intensive Care Unit,ICU)急性肾损伤患者死亡风险预测。以MIMIC-Ⅲ(Medical Information Mark for Intensive CareⅢ)数据库中急性肾损伤患者为研究对象,建立基础贝叶斯分类器,采用...基于贝叶斯网络构建贝叶斯加权模型,进行重症监护病房(Intensive Care Unit,ICU)急性肾损伤患者死亡风险预测。以MIMIC-Ⅲ(Medical Information Mark for Intensive CareⅢ)数据库中急性肾损伤患者为研究对象,建立基础贝叶斯分类器,采用AUC(Area Under Curve)和Accuracy进行混合加权计算的集成策略构建贝叶斯加权模型。实验结果表明,贝叶斯加权模型的AUC值为80.8%、Accuracy值为73.2%、F1-score值为72.4%,预测效果优于单独的贝叶斯网络模型、逻辑回归、支持向量机和随机森林。贝叶斯加权模型具有可解释的概率推理流程,对ICU急性肾损伤患者的死亡风险预测有一定的参考价值。展开更多
文摘基于贝叶斯网络构建贝叶斯加权模型,进行重症监护病房(Intensive Care Unit,ICU)急性肾损伤患者死亡风险预测。以MIMIC-Ⅲ(Medical Information Mark for Intensive CareⅢ)数据库中急性肾损伤患者为研究对象,建立基础贝叶斯分类器,采用AUC(Area Under Curve)和Accuracy进行混合加权计算的集成策略构建贝叶斯加权模型。实验结果表明,贝叶斯加权模型的AUC值为80.8%、Accuracy值为73.2%、F1-score值为72.4%,预测效果优于单独的贝叶斯网络模型、逻辑回归、支持向量机和随机森林。贝叶斯加权模型具有可解释的概率推理流程,对ICU急性肾损伤患者的死亡风险预测有一定的参考价值。