期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自升式钻井平台模块化推进系统的配置和适用性研究
1
作者 吕会敏 常双利 +2 位作者 汪迪 赵迎辉 巩德鑫 《船舶与海洋工程》 2025年第1期28-32,50,共6页
针对自升式海洋平台在拖船的协助下移位存在的作业环节多、效率低和拖航费用高的问题,以一艘服役年限超过30 a的自升式钻井平台为对象,对其模块化推进系统的配置和适用性进行研究。详细介绍模块化推进系统的组成,在助航和动力定位2种工... 针对自升式海洋平台在拖船的协助下移位存在的作业环节多、效率低和拖航费用高的问题,以一艘服役年限超过30 a的自升式钻井平台为对象,对其模块化推进系统的配置和适用性进行研究。详细介绍模块化推进系统的组成,在助航和动力定位2种工况下计算分析平台的水动力,最终确定模块化推进系统总布置方案,并对平台的动力定位性能、稳性、吃水和结构强度进行校核,验证该模块化推进系统在自升式钻井平台上的适用性。通过该研究,为模块化推进系统在自升式钻井平台上的应用提供参考。 展开更多
关键词 模块化推进系统 自升式钻井平台 水动力 动力定位
在线阅读 下载PDF
基于GAF-DenseNet的航空发动机虚假数据注入攻击检测 被引量:1
2
作者 黄鹏程 陈丽丹 +3 位作者 祁恬 张哲 马永良 高明 《航空动力学报》 EI CAS CSCD 北大核心 2023年第7期1691-1702,共12页
提出一种基于格拉姆角场(Gramian angular field, GAF)和密集连接卷积网络(densely connected convolutional networks,DenseNet)的航空发动机系统遭受虚假数据注入攻击的机器学习检测方法。首先,基于美国国家航空和宇宙航行局的商用模... 提出一种基于格拉姆角场(Gramian angular field, GAF)和密集连接卷积网络(densely connected convolutional networks,DenseNet)的航空发动机系统遭受虚假数据注入攻击的机器学习检测方法。首先,基于美国国家航空和宇宙航行局的商用模块化航空推进系统仿真数据集(commercial modular aero-propulsion system simulation,C-MAPSS),构建了连续和间隔虚假数据注入两种攻击模型;其次,通过GAF算法,在保留原始航空发动机传感器获得的时序信号的时间依赖性的前提下,对时间序列数据进行唯一编码,并设计了DenseNet-121网络对图像阵列中内含的传感器信息进行深层挖掘,进而检测航空发动机是否遭受虚假数据注入攻击及攻击类型识别;最后,融合GAF-DenseNet方法在T24、T50和P30传感器上的平均分类准确率为98.46%,与长短期记忆、门控循环单元和卷积神经网络对比分别提高了1.91%、3.82%和0.38%。 展开更多
关键词 航空发动机 商用模块航空推进系统仿真数据(C-MAPSS) 虚假数据注入攻击 格拉姆角场(GAF) 密集连接卷积网络(DenseNet)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部