期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
四阶线性方程极弱局部间断Galerkin法傅里叶分析
1
作者 王如意 毕卉 刘威 《黑龙江大学自然科学学报》 CAS 2024年第2期150-156,共7页
主要研究了四阶线性方程极弱局部间断Galerkin方法的傅里叶误差分析问题。首先,给出四阶线性方程的极弱局部间断Galerkin空间离散格式,并在周期边界条件及一致网格的条件下将离散格式表示为差分形式,然后,在k=2的情况下,利用傅里叶分析... 主要研究了四阶线性方程极弱局部间断Galerkin方法的傅里叶误差分析问题。首先,给出四阶线性方程的极弱局部间断Galerkin空间离散格式,并在周期边界条件及一致网格的条件下将离散格式表示为差分形式,然后,在k=2的情况下,利用傅里叶分析方法分析其稳定性及其误差估计问题,最后,利用数值实验,分别对得到的结果进行验证。 展开更多
关键词 四阶线性方程 极弱局部间断galerkin 傅里叶分析 稳定性分析 误差估计
在线阅读 下载PDF
线性四阶方程隐-显式Runge-Kutta超弱局部间断Galerkin方法的稳定性分析
2
作者 李建飞 毕卉 《黑龙江大学自然科学学报》 2024年第6期700-710,共11页
本文分析一维线性四阶方程全离散隐-显式Runge-Kutta超弱局部间断Galerkin方法的稳定性。首先给出线性四阶方程基于交替数值流通量的超弱局部间断Galerkin空间离散格式,建立数值解的导数与辅助变量之间的关系,通过能量分析,证明了1~3阶... 本文分析一维线性四阶方程全离散隐-显式Runge-Kutta超弱局部间断Galerkin方法的稳定性。首先给出线性四阶方程基于交替数值流通量的超弱局部间断Galerkin空间离散格式,建立数值解的导数与辅助变量之间的关系,通过能量分析,证明了1~3阶隐-显超弱局部间断Galerkin格式的稳定性,最后通过数值实验验证了理论结果。 展开更多
关键词 线性四阶方程 局部间断galerkin方法 全离散 稳定性
在线阅读 下载PDF
Caputo型时间分数阶变系数扩散方程的局部间断Galerkin方法
3
作者 代巧巧 李东霞 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期174-190,共17页
提出一种带有Caputo导数的时间分数阶变系数扩散方程的数值解法.方程的解在初始时刻附近通常具有弱正则性,采用非一致网格上的L1公式离散时间分数阶导数,并使用局部间断Galerkin(local discontinuous Galerkin,LDG)方法离散空间导数,给... 提出一种带有Caputo导数的时间分数阶变系数扩散方程的数值解法.方程的解在初始时刻附近通常具有弱正则性,采用非一致网格上的L1公式离散时间分数阶导数,并使用局部间断Galerkin(local discontinuous Galerkin,LDG)方法离散空间导数,给出方程的全离散格式.基于离散的分数阶Gronwall不等式,证明了格式的数值稳定性和收敛性,且所得结果关于α是鲁棒的,即当α→1^(-)时不会发生爆破.最后,通过数值算例验证理论分析的结果. 展开更多
关键词 局部间断galerkin方法 非一致时间网格 α-鲁棒 正则性 变系数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部