极地钻探实践表明,冰盖底部冰岩交界附近地质情况异常复杂,不但可能存在暖冰、基底融水,甚至还存在厚度不等的冰岩夹层,取心钻探异常困难,而优选钻头类型、确定合理的钻进参数是保证其安全、快速钻进的重要因素。本文设计了一套能够模...极地钻探实践表明,冰盖底部冰岩交界附近地质情况异常复杂,不但可能存在暖冰、基底融水,甚至还存在厚度不等的冰岩夹层,取心钻探异常困难,而优选钻头类型、确定合理的钻进参数是保证其安全、快速钻进的重要因素。本文设计了一套能够模拟冰层回转钻进的实验台,其技术参数为:钻压、转速分别可在0~10 k N、0~300 r/min范围内调节,最大扭矩约100 N·m。该实验台能够测量钻头切削具温度、钻孔深度及钻进速度等参数,为深入研究钻头类型及结构参数、钻进参数对扭矩、钻速和切削温度的影响规律提供了手段。采用PDC复合片钻头进行了冰钻实验,结果表明,实验台能够准确调节钻压和转速,可满足实验要求。展开更多
According to the working environment of the polar glacier core drilling, a separatory funnel capillary viscometer which can be used for testing the viscosity of liquids under ultra-low temperature conditions was de- s...According to the working environment of the polar glacier core drilling, a separatory funnel capillary viscometer which can be used for testing the viscosity of liquids under ultra-low temperature conditions was de- signed. This viscometer has a simple structure and it is easy to operate, which can meet the testing requirements of different temperature conditions. The viscosity of the dimethyl silicone oil KF-96L-2.0cs was measured under different temperatures using this designed viseometer, and it is found that the viscometer coefficient K changes linearly with temperature. This testing method has relatively high test accuracy and its relative error is less than 4%, which can be used to test the viscosity of the different liquids in ultra-low temperature conditions.展开更多
文摘极地钻探实践表明,冰盖底部冰岩交界附近地质情况异常复杂,不但可能存在暖冰、基底融水,甚至还存在厚度不等的冰岩夹层,取心钻探异常困难,而优选钻头类型、确定合理的钻进参数是保证其安全、快速钻进的重要因素。本文设计了一套能够模拟冰层回转钻进的实验台,其技术参数为:钻压、转速分别可在0~10 k N、0~300 r/min范围内调节,最大扭矩约100 N·m。该实验台能够测量钻头切削具温度、钻孔深度及钻进速度等参数,为深入研究钻头类型及结构参数、钻进参数对扭矩、钻速和切削温度的影响规律提供了手段。采用PDC复合片钻头进行了冰钻实验,结果表明,实验台能够准确调节钻压和转速,可满足实验要求。
基金Supported Project of the Natural Science Foundations of China(No.41106158)
文摘According to the working environment of the polar glacier core drilling, a separatory funnel capillary viscometer which can be used for testing the viscosity of liquids under ultra-low temperature conditions was de- signed. This viscometer has a simple structure and it is easy to operate, which can meet the testing requirements of different temperature conditions. The viscosity of the dimethyl silicone oil KF-96L-2.0cs was measured under different temperatures using this designed viseometer, and it is found that the viscometer coefficient K changes linearly with temperature. This testing method has relatively high test accuracy and its relative error is less than 4%, which can be used to test the viscosity of the different liquids in ultra-low temperature conditions.