北极地区海冰既受全球气候变化的影响,同时也影响着全球气候的变化,因此,北极地区已成为研究全球气候变化的热点区域之一。然而,由于北极地区环境恶劣,传统的实地勘测方法成本高,且难度较大。遥感技术,特别是合成孔径雷达(SAR)和全极化...北极地区海冰既受全球气候变化的影响,同时也影响着全球气候的变化,因此,北极地区已成为研究全球气候变化的热点区域之一。然而,由于北极地区环境恶劣,传统的实地勘测方法成本高,且难度较大。遥感技术,特别是合成孔径雷达(SAR)和全极化SAR技术的迅速发展,为北极地区海冰信息的提取提供了更加有效的数据获取方法。以TerraSAR-X全极化数据为基础,采用SEATH(separability and thresholds)面向对象影像分析方法,评估各种极化特征用于提取北极地区海冰信息的能力,并通过分类实验对其结果进行验证。研究表明:|VV|,T11和SPAN等极化特征对海冰具有较好的区分度,这将为大范围的北极地区海冰信息提取以及海冰监测卫星的参数设计提供理论基础。展开更多
A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of ...A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets.展开更多
The scattering-model-based(SMB)speckle filtering for polarimetric SAR(Pol SAR)data is reasonably effective in preserving dominant scattering mechanisms.However,the efficiency strongly depends on the accuracies of both...The scattering-model-based(SMB)speckle filtering for polarimetric SAR(Pol SAR)data is reasonably effective in preserving dominant scattering mechanisms.However,the efficiency strongly depends on the accuracies of both the decomposition and classification of the scattering properties.In addition,a relatively weak speckle reduction particularly in distributed media was reported in the related literatures.In this work,an improved SMB filtering strategy is proposed considering the aforementioned deficiencies.First,the orientation angle compensation is incorporated into the SMB filtering process to remedy the overestimation of the volume scattering contribution in the Freeman-Durden decomposition.In addition,an algorithm to select the homogenous pixels is developed based on the spatial majority rule for adaptive speckle reduction.We demonstrate the superiority of the proposed methods in terms of scattering property preservation and speckle noise reduction using L-band Pol SAR data sets of San Francisco that were acquired by the NASA/JPL airborne SAR(AIRSAR)system.展开更多
Aiming to solve the misclassification problems of unsupervised polarimetric Wishart clas- sification algorithm based on Freeman decomposition, an unsupervised Polarimetric Synthetic Aper- ture Radar (SAR) Interferot...Aiming to solve the misclassification problems of unsupervised polarimetric Wishart clas- sification algorithm based on Freeman decomposition, an unsupervised Polarimetric Synthetic Aper- ture Radar (SAR) Interferotnery (PolInSAR) classification algorithm based on optimal coherence set parameters is studied and proposed. This algorithm uses the result of Freeman decomposition to divide the image into three basic categories including surface scattering, volume scattering, and double-bounce Then, the PolInSAR optimal coherence set parameters are used to finely divide each of the three basic categories into 9 categories, and the whole image is divided into 27 categories. Because both the Freeman decomposition result and optimal coherence set parameters indicate specific scattering characteristics, the whole image is merged into 16 categories based on physical meaning. At last, the Wishart cluster is employed to obtain the final classification result. To preserve the purity of scattering characteristics, pixels with similar scattering characteristics are restricted to be classified with other pixels. The final classification results effectively resolve the misclassification problem, not only the buildings can be effectively distinguished from vegetation in urban areas, but also the road is well distinguished from grass. In this paper, the E-SAR PolInSAR data of German Aerospace Center (DLR) are used to verify the effectiveness of the algorithm.展开更多
文摘北极地区海冰既受全球气候变化的影响,同时也影响着全球气候的变化,因此,北极地区已成为研究全球气候变化的热点区域之一。然而,由于北极地区环境恶劣,传统的实地勘测方法成本高,且难度较大。遥感技术,特别是合成孔径雷达(SAR)和全极化SAR技术的迅速发展,为北极地区海冰信息的提取提供了更加有效的数据获取方法。以TerraSAR-X全极化数据为基础,采用SEATH(separability and thresholds)面向对象影像分析方法,评估各种极化特征用于提取北极地区海冰信息的能力,并通过分类实验对其结果进行验证。研究表明:|VV|,T11和SPAN等极化特征对海冰具有较好的区分度,这将为大范围的北极地区海冰信息提取以及海冰监测卫星的参数设计提供理论基础。
基金Supported by the National Natural Science Foundation of China(62376214)the Natural Science Basic Research Program of Shaanxi(2023-JC-YB-533)Foundation of Ministry of Education Key Lab.of Cognitive Radio and Information Processing(Guilin University of Electronic Technology)(CRKL200203)。
文摘A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets.
基金Project(2012CB957702) supported by the National Basic Research Program of ChinaProjects(41590854,41431070,41274024,41321063) supported by the National Natural Science Foundation of ChinaProject(Y205771077) supported by the Hundred Talents Program of the Chinese Academy of Sciences
文摘The scattering-model-based(SMB)speckle filtering for polarimetric SAR(Pol SAR)data is reasonably effective in preserving dominant scattering mechanisms.However,the efficiency strongly depends on the accuracies of both the decomposition and classification of the scattering properties.In addition,a relatively weak speckle reduction particularly in distributed media was reported in the related literatures.In this work,an improved SMB filtering strategy is proposed considering the aforementioned deficiencies.First,the orientation angle compensation is incorporated into the SMB filtering process to remedy the overestimation of the volume scattering contribution in the Freeman-Durden decomposition.In addition,an algorithm to select the homogenous pixels is developed based on the spatial majority rule for adaptive speckle reduction.We demonstrate the superiority of the proposed methods in terms of scattering property preservation and speckle noise reduction using L-band Pol SAR data sets of San Francisco that were acquired by the NASA/JPL airborne SAR(AIRSAR)system.
文摘Aiming to solve the misclassification problems of unsupervised polarimetric Wishart clas- sification algorithm based on Freeman decomposition, an unsupervised Polarimetric Synthetic Aper- ture Radar (SAR) Interferotnery (PolInSAR) classification algorithm based on optimal coherence set parameters is studied and proposed. This algorithm uses the result of Freeman decomposition to divide the image into three basic categories including surface scattering, volume scattering, and double-bounce Then, the PolInSAR optimal coherence set parameters are used to finely divide each of the three basic categories into 9 categories, and the whole image is divided into 27 categories. Because both the Freeman decomposition result and optimal coherence set parameters indicate specific scattering characteristics, the whole image is merged into 16 categories based on physical meaning. At last, the Wishart cluster is employed to obtain the final classification result. To preserve the purity of scattering characteristics, pixels with similar scattering characteristics are restricted to be classified with other pixels. The final classification results effectively resolve the misclassification problem, not only the buildings can be effectively distinguished from vegetation in urban areas, but also the road is well distinguished from grass. In this paper, the E-SAR PolInSAR data of German Aerospace Center (DLR) are used to verify the effectiveness of the algorithm.