GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distributi...GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distribution and generalized Pareto distribution assumptions are adopted re- spectively to simulate the random component in the model. The demonstration of the quantile of network traffic series indicates that common GARCH-M model can partially deal with the "fat tail" problem. However, the "fat tail" characteristic of the random component directly affects the accura- cy of the calculation. Even t distribution is based on the assumption for all the data. On the other hand, extreme value theory, which only concentrates on the tail distribution, can provide more ac- curate result for high quantiles. The best result is obtained based on the generalized Pareto distribu- tion assumption for the random component in the GARCH-M model.展开更多
基金Supported by University and College Doctoral Subject Special Scientific Research Fund( No. 20040056041).
文摘GARCH-M ( generalized autoregressive conditional heteroskedasticity in the mean) model is used to analyse the volatility clustering phenomenon in mobile communication network traffic. Normal distribution, t distribution and generalized Pareto distribution assumptions are adopted re- spectively to simulate the random component in the model. The demonstration of the quantile of network traffic series indicates that common GARCH-M model can partially deal with the "fat tail" problem. However, the "fat tail" characteristic of the random component directly affects the accura- cy of the calculation. Even t distribution is based on the assumption for all the data. On the other hand, extreme value theory, which only concentrates on the tail distribution, can provide more ac- curate result for high quantiles. The best result is obtained based on the generalized Pareto distribu- tion assumption for the random component in the GARCH-M model.