期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度学习在材料显微图像分析中的应用与挑战
被引量:
11
1
作者
班晓娟
宿彦京
谢建新
《材料科学与工艺》
EI
CAS
CSCD
北大核心
2020年第3期68-75,共8页
材料的组织结构主要受成分和制备加工工艺的影响,是决定材料性能的关键因素,在材料研发的全周期内具有重要作用。材料组织结构以非结构化图像数据的形式呈现,利用人工经验性的手段进行分析和信息抽取,遗漏了大量的材料学信息和隐含知识...
材料的组织结构主要受成分和制备加工工艺的影响,是决定材料性能的关键因素,在材料研发的全周期内具有重要作用。材料组织结构以非结构化图像数据的形式呈现,利用人工经验性的手段进行分析和信息抽取,遗漏了大量的材料学信息和隐含知识。深度学习技术的发展和应用,为材料显微图像中信息的精准、快速、自动获取提供了重要的研究手段。本文从图像处理、图像分析和图像理解3个方面概述了材料显微图像处理与信息挖掘的主要研究内容和关键技术,详细介绍了深度学习在图像分析中的图像识别、图像分割和图像生成3个任务中的研究进展,讨论了深度学习在材料显微图像分析和信息挖掘中的发展方向和挑战。
展开更多
关键词
材料显微图像分析
机器学习
深度学习
计算机视觉
图像
处理
在线阅读
下载PDF
职称材料
题名
深度学习在材料显微图像分析中的应用与挑战
被引量:
11
1
作者
班晓娟
宿彦京
谢建新
机构
北京科技大学北京材料基因工程高精尖创新中心
材料领域知识工程北京市重点实验室(北京科技大学)
北京科技大学计算机与通信工程学院
北京科技大学新材料技术研究院
出处
《材料科学与工艺》
EI
CAS
CSCD
北大核心
2020年第3期68-75,共8页
基金
国家重点研发计划项目(2016YFB0700500)。
文摘
材料的组织结构主要受成分和制备加工工艺的影响,是决定材料性能的关键因素,在材料研发的全周期内具有重要作用。材料组织结构以非结构化图像数据的形式呈现,利用人工经验性的手段进行分析和信息抽取,遗漏了大量的材料学信息和隐含知识。深度学习技术的发展和应用,为材料显微图像中信息的精准、快速、自动获取提供了重要的研究手段。本文从图像处理、图像分析和图像理解3个方面概述了材料显微图像处理与信息挖掘的主要研究内容和关键技术,详细介绍了深度学习在图像分析中的图像识别、图像分割和图像生成3个任务中的研究进展,讨论了深度学习在材料显微图像分析和信息挖掘中的发展方向和挑战。
关键词
材料显微图像分析
机器学习
深度学习
计算机视觉
图像
处理
Keywords
material microscopic image analysis
machine learning
deep learning
computer vision
image processing
分类号
TPB391 [自动化与计算机技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度学习在材料显微图像分析中的应用与挑战
班晓娟
宿彦京
谢建新
《材料科学与工艺》
EI
CAS
CSCD
北大核心
2020
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部