The paper analyzes the radon data of nearly two decades on the Jiayuguan fault zone,discusses the main influencing factors,and puts forward the relationship between radon and air temperature,ground temperature and rai...The paper analyzes the radon data of nearly two decades on the Jiayuguan fault zone,discusses the main influencing factors,and puts forward the relationship between radon and air temperature,ground temperature and rainfall.We summarized the earthquake reflecting effect for ML≥5.0 about 400km within the Jiayuguan station,and reached the conclusion that it has better earthquake-reflecting ability before an earthquake,usually appearing as abnormal changes in sustained low value.By extracting the annual trend of radon in Jiayuguan station over many years,we discovered that the annual trend of radon has a close relationship with the seismic activity in surrounding areas,namely,if the annual variation of radon is larger,the seismic activity in surrounding areas is stronger;Otherwise,if the annual variation of radon is relatively stable,the seismic activity in the vicinity is weak.展开更多
On November 14, 2001, an extraordinarily large earthquake (MS8.1) occurred on the Hoh Sai Hu segment of the Eastern Kunlun Fault, in the northern Qinghai-Tibetan Plateau. The seismogenic fault, the Hoh Sai Hu segment,...On November 14, 2001, an extraordinarily large earthquake (MS8.1) occurred on the Hoh Sai Hu segment of the Eastern Kunlun Fault, in the northern Qinghai-Tibetan Plateau. The seismogenic fault, the Hoh Sai Hu segment, is a left-lateral fault with a high slip rate in geological history, with the average slip rate reaching(14.8±2.8)mm/a since the late Pleistocene. Different slip rates of the Hoh Sai Hu segment can affect fault motion in the future. Therefore, this paper analyzes the effect of different slip rates and different initial friction coefficients on the fault plane of the Hoh Sai Hu segment of the eastern Kunlun Fault on the rupture behaviors of the fault. In this research, we apply the single degree of spring block model controlled by the rateand state-dependent frictional constitutive laws. Using the fault dislocation model and based on ancient earthquake research, historical earthquakes data and the achievements of previous researchers, we obtained the parameters of this model. Through numerical simulation of the rupturing motion of the Hoh Sai Hu segment in the next 6500 years under different slip rates, we find that a faster annual slip rate will shorten the recurrence interval of the earthquake. For example, the earthquake recurrence interval is 2100a at a slip rate of 0.014m/a, which agrees with previous research, but, the recurrence interval will be 1000~1500a and 2100~2500a, corresponding to the slip rates of 0.018m/a and 0.008m/a, respectively. The fault slip rate has no regular effect on the coseismic slip rate and fault displacement in an earthquake. The initial friction coefficient on the fault surface has an effect on the earthquake recurrence interval. A smaller initial friction coefficient will lengthen the earthquake recurrence interval. At the same time, the smaller initial friction coefficient will lead to larger slip rates and fault displacement when earthquakes occur.展开更多
基金sponsored by the Youth Fund of China Earthquake Networks Center (150-1548,406-1503)
文摘The paper analyzes the radon data of nearly two decades on the Jiayuguan fault zone,discusses the main influencing factors,and puts forward the relationship between radon and air temperature,ground temperature and rainfall.We summarized the earthquake reflecting effect for ML≥5.0 about 400km within the Jiayuguan station,and reached the conclusion that it has better earthquake-reflecting ability before an earthquake,usually appearing as abnormal changes in sustained low value.By extracting the annual trend of radon in Jiayuguan station over many years,we discovered that the annual trend of radon has a close relationship with the seismic activity in surrounding areas,namely,if the annual variation of radon is larger,the seismic activity in surrounding areas is stronger;Otherwise,if the annual variation of radon is relatively stable,the seismic activity in the vicinity is weak.
基金jointly sponsored by the Special Program of Basic R&D Fund,Institute of Geology,CEAthe Seismic Industry Research Program,CEA( 200808018)
文摘On November 14, 2001, an extraordinarily large earthquake (MS8.1) occurred on the Hoh Sai Hu segment of the Eastern Kunlun Fault, in the northern Qinghai-Tibetan Plateau. The seismogenic fault, the Hoh Sai Hu segment, is a left-lateral fault with a high slip rate in geological history, with the average slip rate reaching(14.8±2.8)mm/a since the late Pleistocene. Different slip rates of the Hoh Sai Hu segment can affect fault motion in the future. Therefore, this paper analyzes the effect of different slip rates and different initial friction coefficients on the fault plane of the Hoh Sai Hu segment of the eastern Kunlun Fault on the rupture behaviors of the fault. In this research, we apply the single degree of spring block model controlled by the rateand state-dependent frictional constitutive laws. Using the fault dislocation model and based on ancient earthquake research, historical earthquakes data and the achievements of previous researchers, we obtained the parameters of this model. Through numerical simulation of the rupturing motion of the Hoh Sai Hu segment in the next 6500 years under different slip rates, we find that a faster annual slip rate will shorten the recurrence interval of the earthquake. For example, the earthquake recurrence interval is 2100a at a slip rate of 0.014m/a, which agrees with previous research, but, the recurrence interval will be 1000~1500a and 2100~2500a, corresponding to the slip rates of 0.018m/a and 0.008m/a, respectively. The fault slip rate has no regular effect on the coseismic slip rate and fault displacement in an earthquake. The initial friction coefficient on the fault surface has an effect on the earthquake recurrence interval. A smaller initial friction coefficient will lengthen the earthquake recurrence interval. At the same time, the smaller initial friction coefficient will lead to larger slip rates and fault displacement when earthquakes occur.