期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Bi-LSTM和Transformer的谱图预测模型
1
作者
朱宇翀
陈德华
潘乔
《智能计算机与应用》
2025年第3期203-206,共4页
数据非依赖采集(DIA)近年来发展迅速,在蛋白质组学中也有着广泛的应用。DIA数据的蛋白质鉴定通常需要使用由数据依赖采集(DDA)得到的谱图数据库。然而该数据库含有的信息有限,为了在搜索过程中覆盖更多的蛋白质,目前采用深度学习模型的...
数据非依赖采集(DIA)近年来发展迅速,在蛋白质组学中也有着广泛的应用。DIA数据的蛋白质鉴定通常需要使用由数据依赖采集(DDA)得到的谱图数据库。然而该数据库含有的信息有限,为了在搜索过程中覆盖更多的蛋白质,目前采用深度学习模型的预测结果对该数据库进行补充。针对谱图预测任务,不同模型在不同数据集上的表现存在差异,且仅有少量模型展示了其在四维(4D)质谱数据上的性能。本文比较不同序列模型在4D-DIA血浆数据上的表现,提出了一个新的模型结构,该模型使用门控结合了双向长短期记忆网络(Bi-LSTM)和Transformer的特征,在较长的氨基酸序列上拥有更好的表现。
展开更多
关键词
数据非依赖采集技术
谱图预测
双向长短期记忆网络
TRANSFORMER
在线阅读
下载PDF
职称材料
题名
基于Bi-LSTM和Transformer的谱图预测模型
1
作者
朱宇翀
陈德华
潘乔
机构
东华大学计算机科学与技术学院
出处
《智能计算机与应用》
2025年第3期203-206,共4页
文摘
数据非依赖采集(DIA)近年来发展迅速,在蛋白质组学中也有着广泛的应用。DIA数据的蛋白质鉴定通常需要使用由数据依赖采集(DDA)得到的谱图数据库。然而该数据库含有的信息有限,为了在搜索过程中覆盖更多的蛋白质,目前采用深度学习模型的预测结果对该数据库进行补充。针对谱图预测任务,不同模型在不同数据集上的表现存在差异,且仅有少量模型展示了其在四维(4D)质谱数据上的性能。本文比较不同序列模型在4D-DIA血浆数据上的表现,提出了一个新的模型结构,该模型使用门控结合了双向长短期记忆网络(Bi-LSTM)和Transformer的特征,在较长的氨基酸序列上拥有更好的表现。
关键词
数据非依赖采集技术
谱图预测
双向长短期记忆网络
TRANSFORMER
Keywords
DIA
spectrum prediction
Bi-LSTM
Transformer
分类号
TP399 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Bi-LSTM和Transformer的谱图预测模型
朱宇翀
陈德华
潘乔
《智能计算机与应用》
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部