基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取...基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。展开更多
针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp...针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。展开更多
[目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。...[目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。[方法]采用RoFormer预训练模型对输入的文本进行向量化,利用其独特的旋转位置嵌入方法来捕捉位置信息,丰富字词特征信息,从而解决一词多义导致的类型易混淆的问题。使用指针网络进行解码,利用指针网络的首尾指针标注方式抽取句子中的所有实体,首尾指针标注方式可以解决实体抽取中存在的嵌套问题。[结果和讨论]自建农业病害数据集,数据集中包含2867条标注语料,共10282个实体。为验证RoFormer预训练模型在实体抽取上的优越性,采用Word2Vec、BERT、RoBERTa等多种向量化模型进行对比试验,RoFormer-PointerNet与其他模型相比,模型精确率、召回率、F1值均为最优,分别为87.49%,85.76%和86.62%。为验证RoFormer-PointerNet在缓解实体嵌套的优势,与使用最为广泛的双向长短期记忆神经网络(Bidirectional Long Short-Term Memory,BiLSTM)和条件随机场(Conditional Random Field,CRF)模型进行对比试验,RoFormer-PointerNet比RoFormer-BiLSTM模型、RoFormer-CRF模型和RoFormer-BiLSTM-CRF模型分别高出4.8%、5.67%和3.87%,证明用指针网络模型可以很好解决实体嵌套问题。最后验证RoFormer-PointerNet方法在农业病害数据集中的识别性能,针对病害症状、病害名称、防治方法等8类实体进行了识别实验,本方法识别的精确率、召回率和F1值分别为87.49%、85.76%和86.62%,为同类最优。[结论]本研究提出的方法能有效识别中文农业病害文本中的实体,识别效果优于其他模型。在解决实体抽取过程中的实体嵌套和类型混淆等问题方面具有一定优势。展开更多
随着中国医学事业的快速发展,中文医学文本的数量不断增加。为了从这些中文医学文本中提取有价值的信息,并解决中文医学领域的实体关系抽取问题,研究人员已经提出一系列基于双向LSTM的模型。然而,由于双向LSTM的训练速度等问题,文中引...随着中国医学事业的快速发展,中文医学文本的数量不断增加。为了从这些中文医学文本中提取有价值的信息,并解决中文医学领域的实体关系抽取问题,研究人员已经提出一系列基于双向LSTM的模型。然而,由于双向LSTM的训练速度等问题,文中引入了层叠指针网络框架来处理中文医学文本的实体关系抽取任务。为了弥补层叠指针网络框架中主实体识别能力不足以及解决复用编码层时的梯度问题,文中提出了主实体增强模块,并引入了条件层归一化方法,从而提出了面向中文医学文本的主语增强型层叠指针网络框架(Subject Enhanced Cascade Binary Pointer Tagging Framework for Chinese Medical Text,SE-CAS)。通过引入主实体增强模块,能够精确识别有效的主实体,并排除错误实体。此外,还使用条件层归一化方法来替代原模型中的简单相加方法,并将其应用于编码层和主实体编码层。实验结果证明,所提模型在CMeIE数据集上取得了5.73%的F1值提升。通过消融实验证实,各个模块均能带来性能提升,并且这些提升具有叠加效应。展开更多
针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句...针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。展开更多
现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method...现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network,ATCEE).首先,融合预训练字符向量和词性标注向量作为特征输入,并利用双向长短期记忆网络,得到事件文本的强化语义特征.再将字符级建模的依存句法图引入图注意力网络,捕获文本中各组成成分的长距离依赖关系.然后,使用表填充的方法进行特征融合,进一步增强触发词和其对应的所有论元之间的依赖性.最后,将学习得到的表特征输入全连接层和表指针网络层,进行触发词和论元的联合抽取,使用表指针网络对论元边界进行解码,更好地识别长论元实体.实验表明:ATCEE在ACE2005和DuEE1.0这两个中文基准数据集上都有明显的性能提升,并且字符级依存特征和表填充策略在一定程度上可以解决论元角色重叠问题.ATCEE源代码地址如下:https://github.com/event6/ATCEE.展开更多
针对传统引入注意力机制的Encoder-Decoder模型在摘要生成任务上存在文字冗余、表述不一致、非登录词(out of vocabulary,OOV)等问题,而导致生成摘要准确性较差,对可嵌入文本位置信息的Transformer模型进行了改进。提出引入指针网络帮...针对传统引入注意力机制的Encoder-Decoder模型在摘要生成任务上存在文字冗余、表述不一致、非登录词(out of vocabulary,OOV)等问题,而导致生成摘要准确性较差,对可嵌入文本位置信息的Transformer模型进行了改进。提出引入指针网络帮助解码,利用指针网络生成文本的优势生成摘要,并在LCSTS中文短文本摘要数据集上验证了该模型的有效性。结果表明:改进后的Transformer模型在ROUGE评分上比基准模型平均高出2分,在保证摘要与输入文本一致性的同时,其生成内容的显著性和语言的流畅性提升明显。展开更多
文摘基于“预训练+微调”范式的实体关系联合抽取方法依赖大规模标注数据,在数据标注难度大、成本高的中文古籍小样本场景下微调效率低,抽取性能不佳;中文古籍中普遍存在实体嵌套和关系重叠的问题,限制了实体关系联合抽取的效果;管道式抽取方法存在错误传播问题,影响抽取效果。针对以上问题,提出一种基于提示学习和全局指针网络的中文古籍实体关系联合抽取方法。首先,利用区间抽取式阅读理解的提示学习方法对预训练语言模型(PLM)注入领域知识以统一预训练和微调的优化目标,并对输入句子进行编码表示;其次,使用全局指针网络分别对主、客实体边界和不同关系下的主、客实体边界进行预测和联合解码,对齐成实体关系三元组,并构建了PTBG(Prompt Tuned BERT with Global pointer)模型,解决实体嵌套和关系重叠问题,同时避免了管道式解码的错误传播问题;最后,在上述工作基础上分析了不同提示模板对抽取性能的影响。在《史记》数据集上进行实验的结果表明,相较于注入领域知识前后的OneRel模型,PTBG模型所取得的F1值分别提升了1.64和1.97个百分点。可见,PTBG模型能更好地对中文古籍实体关系进行联合抽取,为低资源的小样本深度学习场景提供了新的研究思路与方法。
文摘针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。
文摘[目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。[方法]采用RoFormer预训练模型对输入的文本进行向量化,利用其独特的旋转位置嵌入方法来捕捉位置信息,丰富字词特征信息,从而解决一词多义导致的类型易混淆的问题。使用指针网络进行解码,利用指针网络的首尾指针标注方式抽取句子中的所有实体,首尾指针标注方式可以解决实体抽取中存在的嵌套问题。[结果和讨论]自建农业病害数据集,数据集中包含2867条标注语料,共10282个实体。为验证RoFormer预训练模型在实体抽取上的优越性,采用Word2Vec、BERT、RoBERTa等多种向量化模型进行对比试验,RoFormer-PointerNet与其他模型相比,模型精确率、召回率、F1值均为最优,分别为87.49%,85.76%和86.62%。为验证RoFormer-PointerNet在缓解实体嵌套的优势,与使用最为广泛的双向长短期记忆神经网络(Bidirectional Long Short-Term Memory,BiLSTM)和条件随机场(Conditional Random Field,CRF)模型进行对比试验,RoFormer-PointerNet比RoFormer-BiLSTM模型、RoFormer-CRF模型和RoFormer-BiLSTM-CRF模型分别高出4.8%、5.67%和3.87%,证明用指针网络模型可以很好解决实体嵌套问题。最后验证RoFormer-PointerNet方法在农业病害数据集中的识别性能,针对病害症状、病害名称、防治方法等8类实体进行了识别实验,本方法识别的精确率、召回率和F1值分别为87.49%、85.76%和86.62%,为同类最优。[结论]本研究提出的方法能有效识别中文农业病害文本中的实体,识别效果优于其他模型。在解决实体抽取过程中的实体嵌套和类型混淆等问题方面具有一定优势。
文摘随着中国医学事业的快速发展,中文医学文本的数量不断增加。为了从这些中文医学文本中提取有价值的信息,并解决中文医学领域的实体关系抽取问题,研究人员已经提出一系列基于双向LSTM的模型。然而,由于双向LSTM的训练速度等问题,文中引入了层叠指针网络框架来处理中文医学文本的实体关系抽取任务。为了弥补层叠指针网络框架中主实体识别能力不足以及解决复用编码层时的梯度问题,文中提出了主实体增强模块,并引入了条件层归一化方法,从而提出了面向中文医学文本的主语增强型层叠指针网络框架(Subject Enhanced Cascade Binary Pointer Tagging Framework for Chinese Medical Text,SE-CAS)。通过引入主实体增强模块,能够精确识别有效的主实体,并排除错误实体。此外,还使用条件层归一化方法来替代原模型中的简单相加方法,并将其应用于编码层和主实体编码层。实验结果证明,所提模型在CMeIE数据集上取得了5.73%的F1值提升。通过消融实验证实,各个模块均能带来性能提升,并且这些提升具有叠加效应。
文摘针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。
文摘现有的中文事件抽取方法存在触发词和论元依赖建模不足的问题,削弱事件内的信息交互,导致论元抽取性能低下,特别是论元角色存在重叠的情况下.对此,文中提出基于图注意力和表指针网络的中文事件抽取方法(Chinese Event Extraction Method Based on Graph Attention and Table Pointer Network,ATCEE).首先,融合预训练字符向量和词性标注向量作为特征输入,并利用双向长短期记忆网络,得到事件文本的强化语义特征.再将字符级建模的依存句法图引入图注意力网络,捕获文本中各组成成分的长距离依赖关系.然后,使用表填充的方法进行特征融合,进一步增强触发词和其对应的所有论元之间的依赖性.最后,将学习得到的表特征输入全连接层和表指针网络层,进行触发词和论元的联合抽取,使用表指针网络对论元边界进行解码,更好地识别长论元实体.实验表明:ATCEE在ACE2005和DuEE1.0这两个中文基准数据集上都有明显的性能提升,并且字符级依存特征和表填充策略在一定程度上可以解决论元角色重叠问题.ATCEE源代码地址如下:https://github.com/event6/ATCEE.
文摘针对传统引入注意力机制的Encoder-Decoder模型在摘要生成任务上存在文字冗余、表述不一致、非登录词(out of vocabulary,OOV)等问题,而导致生成摘要准确性较差,对可嵌入文本位置信息的Transformer模型进行了改进。提出引入指针网络帮助解码,利用指针网络生成文本的优势生成摘要,并在LCSTS中文短文本摘要数据集上验证了该模型的有效性。结果表明:改进后的Transformer模型在ROUGE评分上比基准模型平均高出2分,在保证摘要与输入文本一致性的同时,其生成内容的显著性和语言的流畅性提升明显。