Dragline,framework and cocoon silk fibers of Araneus Ventricosus were used for this study.To investigate the microstructure mechanisms of stress-strain behavior of spider silk,firstly,amino acid compositions were anal...Dragline,framework and cocoon silk fibers of Araneus Ventricosus were used for this study.To investigate the microstructure mechanisms of stress-strain behavior of spider silk,firstly,amino acid compositions were analyzed and molecular conformations and crystallinity were measured with Raman spectra and X-ray diffraction respectively.The results showed that there were more amino acids with large side groups and polar ones in spider silk than those of Bombyx silk,and the amino acid distribution varied with different spider silk.The molecular structures were mainly α-helix and β-sheet,and random coil and β-turn existed as well.The proportions and arrangement of these conformations of dragline silk were different from framework and cocoon silk fibers.Microstructure was one of important factors of excellent mechanical properties of spider silk.Crystallinity of spider silk was very low,which implied that the roles of crystal on spider silk were not as great as other protein fibers.展开更多
Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS ...Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types:① single particles and ② arrays on substrate that are directly used to detect molecules or other components.In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands' position from recent literatures are discussed.展开更多
文摘Dragline,framework and cocoon silk fibers of Araneus Ventricosus were used for this study.To investigate the microstructure mechanisms of stress-strain behavior of spider silk,firstly,amino acid compositions were analyzed and molecular conformations and crystallinity were measured with Raman spectra and X-ray diffraction respectively.The results showed that there were more amino acids with large side groups and polar ones in spider silk than those of Bombyx silk,and the amino acid distribution varied with different spider silk.The molecular structures were mainly α-helix and β-sheet,and random coil and β-turn existed as well.The proportions and arrangement of these conformations of dragline silk were different from framework and cocoon silk fibers.Microstructure was one of important factors of excellent mechanical properties of spider silk.Crystallinity of spider silk was very low,which implied that the roles of crystal on spider silk were not as great as other protein fibers.
基金the National Natural Science Foundation of China(No.21375087)the Natural Science Foundation of Shanghai(No.13ZR1422100)
文摘Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types:① single particles and ② arrays on substrate that are directly used to detect molecules or other components.In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands' position from recent literatures are discussed.