近年来,以Chat GPT为代表的大语言模型(large language model,LLM)技术发展迅速.随着模型参数规模的持续增长,构建和应用大模型对数据存储规模和存储访问效率提出了更高要求,这对传统存储系统带来了严峻挑战.首先分析了大模型在数据准...近年来,以Chat GPT为代表的大语言模型(large language model,LLM)技术发展迅速.随着模型参数规模的持续增长,构建和应用大模型对数据存储规模和存储访问效率提出了更高要求,这对传统存储系统带来了严峻挑战.首先分析了大模型在数据准备、模型训练和推理阶段的存储访问特征,深入探讨了传统存储系统在大模型场景下面临的主要问题和瓶颈.针对这些挑战,提出并实现了一种高性能、可扩展的分布式元数据设计Scale FS.通过目录树元数据与属性元数据解耦的架构设计,并结合深度与广度均衡的目录树分层分区策略设计,Scale FS实现了高效的路径解析、负载均衡和系统扩展能力,能够高效管理千亿级文件.此外,Scale FS设计了细粒度元数据结构,优化了元数据访问模式,并构建了面向文件语义优化的元数据键值存储底座,显著提升了元数据访问效率并减少了磁盘I/O操作.实验结果表明,Scale FS的每秒操作次数(operations per second,OPS)是HDFS的1.04~7.12倍,而延迟仅为HDFS的12.67%~99.55%.在千亿级文件规模下,Scale FS的大部分操作性能优于HDFS在十亿级文件规模下的表现,展现出更高的扩展性和访问效率,能够更好地满足大模型场景对千亿级文件存储及高效访问的需求.展开更多