Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si...Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.展开更多
In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial netw...In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.展开更多
针对现有的序列推荐算法仅利用短期顺序行为进行推荐,而没有充分考虑用户的长期偏好和项目之间更深层次的联系等问题,提出一种融合自注意力机制与长短期偏好的序列推荐模型(combines self-attention with long-term and short-term reco...针对现有的序列推荐算法仅利用短期顺序行为进行推荐,而没有充分考虑用户的长期偏好和项目之间更深层次的联系等问题,提出一种融合自注意力机制与长短期偏好的序列推荐模型(combines self-attention with long-term and short-term recommendation,CSALSR)。该模型首先建模用户和项目的潜在特征表示,将用户短期交互序列中的项目成对编码为三向张量,然后经过自注意力机制模块并使用卷积神经网络(convolutional neural network,CNN)从用户的顺序模式中提取项目间更深层次的联系。同时考虑用户的长期偏好,将相似用户的嵌入作为补充增强用户表征。在MovieLens-1M和Gowalla数据集上,实验结果表明提出的方法在准确率precision@N、召回率recall@N、均值平均精度(mean average precision,MAP)上优于其他方法。展开更多
Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion a...Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition.展开更多
文摘Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.
基金supported by National Natural Science Foundation of China(No.11802272)China Postdoctoral Science Foundation(No.2019M651085)。
文摘In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect.
文摘针对现有的序列推荐算法仅利用短期顺序行为进行推荐,而没有充分考虑用户的长期偏好和项目之间更深层次的联系等问题,提出一种融合自注意力机制与长短期偏好的序列推荐模型(combines self-attention with long-term and short-term recommendation,CSALSR)。该模型首先建模用户和项目的潜在特征表示,将用户短期交互序列中的项目成对编码为三向张量,然后经过自注意力机制模块并使用卷积神经网络(convolutional neural network,CNN)从用户的顺序模式中提取项目间更深层次的联系。同时考虑用户的长期偏好,将相似用户的嵌入作为补充增强用户表征。在MovieLens-1M和Gowalla数据集上,实验结果表明提出的方法在准确率precision@N、召回率recall@N、均值平均精度(mean average precision,MAP)上优于其他方法。
基金Project(51678075) supported by the National Natural Science Foundation of ChinaProject(2017GK2271) supported by Hunan Provincial Science and Technology Department,China
文摘Aiming at the problem of small area human occlusion in gait recognition,a method based on generating adversarial image inpainting network was proposed which can generate a context consistent image for gait occlusion area.In order to reduce the effect of noise on feature extraction,the stacked automatic encoder with robustness was used.In order to improve the ability of gait classification,the sparse coding was used to express and classify the gait features.Experiments results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA-B and TUM-GAID for gait recognition.