In order to gain the great performance of ASIP, this paper discusses different aspects of an ASIP instruction set specification like syntax, encoding, constraints as welt as behaviors, and introduces our ADL model bas...In order to gain the great performance of ASIP, this paper discusses different aspects of an ASIP instruction set specification like syntax, encoding, constraints as welt as behaviors, and introduces our ADL model based methodology to check them. The automatic generation of test cases based on our straight-forward instruction representation is shown, and the efficient generation of them with good coverage is shown as well. The verification of the constraint checker, a very important tool for programmer, is performed. Results show that the toolkit can find some errors in previous delivery tools, and the introduced methodology verifies the feasibility of our instruction set specification.展开更多
The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle. The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equat...The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle. The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equation RNG k-? turbulence model have been employed to investigate the influence of the high angle of attack on the lift-to-drag ratio and the flow field characteristics of the hypersonic space vehicle, and the contributions of each component to the aerodynamic forces of the vehicle have been discussed as well. At the same time, in order to validate the numerical method, the predicted results have been compared with the available experimental data of a hypersonic slender vehicle, and the grid independency has been analyzed. The obtained results show that the predicted lift-to-drag ratio and pitching moment coefficient show very good agreement with the experimental data in the open literature, and the grid system makes only a slight difference to the numerical results. There exists an optimal angle of attack for the aerodynamic performance of the hypersonic space vehicle, and its value is 20°. When the angle of attack is 20°, the high pressure does not leak from around the leading edge to the upper surface. With the further increasing of the angle of attack, the high pressure spreads from the wing tips to the central area of the vehicle, and overflows from the leading edge again. Further, the head plays an important role in the drag performance of the vehicle, and the lift percentage of the flaperon is larger than that of the rudderevator. This illustrates that the optimization of the flaperon configuration is a great work for the improvement of the aerodynamic performance of the hypersonic space vehicle, especially for a high lift-to-drag ratio.展开更多
文摘In order to gain the great performance of ASIP, this paper discusses different aspects of an ASIP instruction set specification like syntax, encoding, constraints as welt as behaviors, and introduces our ADL model based methodology to check them. The automatic generation of test cases based on our straight-forward instruction representation is shown, and the efficient generation of them with good coverage is shown as well. The verification of the constraint checker, a very important tool for programmer, is performed. Results show that the toolkit can find some errors in previous delivery tools, and the introduced methodology verifies the feasibility of our instruction set specification.
基金supported by the Science Foundation of the National University of Defense Technology (Grant No. JC11-01-02)National Natural Science Foundation of China (Grant Nos. 90816027, 61004094)
文摘The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle. The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equation RNG k-? turbulence model have been employed to investigate the influence of the high angle of attack on the lift-to-drag ratio and the flow field characteristics of the hypersonic space vehicle, and the contributions of each component to the aerodynamic forces of the vehicle have been discussed as well. At the same time, in order to validate the numerical method, the predicted results have been compared with the available experimental data of a hypersonic slender vehicle, and the grid independency has been analyzed. The obtained results show that the predicted lift-to-drag ratio and pitching moment coefficient show very good agreement with the experimental data in the open literature, and the grid system makes only a slight difference to the numerical results. There exists an optimal angle of attack for the aerodynamic performance of the hypersonic space vehicle, and its value is 20°. When the angle of attack is 20°, the high pressure does not leak from around the leading edge to the upper surface. With the further increasing of the angle of attack, the high pressure spreads from the wing tips to the central area of the vehicle, and overflows from the leading edge again. Further, the head plays an important role in the drag performance of the vehicle, and the lift percentage of the flaperon is larger than that of the rudderevator. This illustrates that the optimization of the flaperon configuration is a great work for the improvement of the aerodynamic performance of the hypersonic space vehicle, especially for a high lift-to-drag ratio.