The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange mem...The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.展开更多
With the development of science and technology,ordered microstructures with special functions have aroused intense research interest.These functional microstructures have been widely used in fields of microelectronic ...With the development of science and technology,ordered microstructures with special functions have aroused intense research interest.These functional microstructures have been widely used in fields of microelectronic devices,micro-reactors,biochemical sensors and optical devices,etc.This paper summaries our work on preparation and application of microscopic patterned surfaces with ordered microstructures,and looks into the future development of this field.展开更多
MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffract...MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.展开更多
基金Project(51272289) supported by the National Natural Science Foundation of China
文摘The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.
基金supported by the National Natural Science Foundation of China (20921003,20534040 & 20874039)the National Basic Research Program of China (2007CB936402)
文摘With the development of science and technology,ordered microstructures with special functions have aroused intense research interest.These functional microstructures have been widely used in fields of microelectronic devices,micro-reactors,biochemical sensors and optical devices,etc.This paper summaries our work on preparation and application of microscopic patterned surfaces with ordered microstructures,and looks into the future development of this field.
文摘MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.