Recycling is an alternative for preserving historical heritage buildings. Through such process, buildings are occupied by new usages that assure they are not abandoned. However, conservation issues, like pathological ...Recycling is an alternative for preserving historical heritage buildings. Through such process, buildings are occupied by new usages that assure they are not abandoned. However, conservation issues, like pathological manifestations by filamentous fungi, are common even in buildings receiving new uses. Thus, it is extremely important to know the microclimate behavior of these buildings and analyze if there are usages that favor the appearance of filamentous fungi or not. This study aims to verify if new usages modify the microclimate in historical buildings and if such possible change favors the appearance of pathological manifestations by filamentous fimgi in some specific use. To achieve the results, three buildings that have gone through recycling processes were chosen in the city of Pelotas, in Southernmost Brazil. The city possesses a large number of buildings with historical value and its climate conditions are propitious for appearance of filamentous fungi. For 12 months, microclimate was monitored, the environments modus operandi was characterized and there was a survey on the pathological manifestations by filamentous fungi in the three buildings with two different uses: administration offices and exhibition rooms. Conclusion was that usages that allow natural ventilation and lighting favor conservation, which is what happens in the ones used as administration offices. Besides that, it was noticed that the construction system also influences, since buildings with a high cellar that is being used did not present filamentous fungi, which also shows the influence of ascending humidity on the appearance of such pathological manifestations.展开更多
Formation and preservation of greigite can indicate the physicochemical characteristics of sedimentary environment. Presence of greigite can be diagnosed in the late Pleistocene fluvio-lacustrine sedimentary layers of...Formation and preservation of greigite can indicate the physicochemical characteristics of sedimentary environment. Presence of greigite can be diagnosed in the late Pleistocene fluvio-lacustrine sedimentary layers of 29.4–29.7 and 26.1–27.1 m in core ZK30 of the Yellow River delta, based on analysis of particle size, magnetic properties, scanning electron microscope(SEM) and X-ray diffraction(XRD) measurements. These layers are the transition zones from shallow marine facies to fluvio- lacustrine facies, and from fluvio-lacustrine facies to salt marsh facies in an ascending order, respectively. They are characterized by higher SIRM and SIRM/χ(>30 kA m-1) values than those of other layers, suggesting the possible existence of greigite. Both SEM and XRD analyses confirm its presence. However, sediment layer of 29.4–29.7 m are coarser, and greigite coexists with pyrite, but sediment layer of 26.1–27.1 m are finer and the occurrence of greigite is not accompanied by pyrite. The different occurrence of greigite in the two layers suggests that different climate condition and sedimentary environment control its formation and preservation.展开更多
文摘Recycling is an alternative for preserving historical heritage buildings. Through such process, buildings are occupied by new usages that assure they are not abandoned. However, conservation issues, like pathological manifestations by filamentous fungi, are common even in buildings receiving new uses. Thus, it is extremely important to know the microclimate behavior of these buildings and analyze if there are usages that favor the appearance of filamentous fungi or not. This study aims to verify if new usages modify the microclimate in historical buildings and if such possible change favors the appearance of pathological manifestations by filamentous fimgi in some specific use. To achieve the results, three buildings that have gone through recycling processes were chosen in the city of Pelotas, in Southernmost Brazil. The city possesses a large number of buildings with historical value and its climate conditions are propitious for appearance of filamentous fungi. For 12 months, microclimate was monitored, the environments modus operandi was characterized and there was a survey on the pathological manifestations by filamentous fungi in the three buildings with two different uses: administration offices and exhibition rooms. Conclusion was that usages that allow natural ventilation and lighting favor conservation, which is what happens in the ones used as administration offices. Besides that, it was noticed that the construction system also influences, since buildings with a high cellar that is being used did not present filamentous fungi, which also shows the influence of ascending humidity on the appearance of such pathological manifestations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030856,41176039,41376054 and 41030856)the Natural Science Foundation of Shandong Province(Grant No.2011ZRE29040)
文摘Formation and preservation of greigite can indicate the physicochemical characteristics of sedimentary environment. Presence of greigite can be diagnosed in the late Pleistocene fluvio-lacustrine sedimentary layers of 29.4–29.7 and 26.1–27.1 m in core ZK30 of the Yellow River delta, based on analysis of particle size, magnetic properties, scanning electron microscope(SEM) and X-ray diffraction(XRD) measurements. These layers are the transition zones from shallow marine facies to fluvio- lacustrine facies, and from fluvio-lacustrine facies to salt marsh facies in an ascending order, respectively. They are characterized by higher SIRM and SIRM/χ(>30 kA m-1) values than those of other layers, suggesting the possible existence of greigite. Both SEM and XRD analyses confirm its presence. However, sediment layer of 29.4–29.7 m are coarser, and greigite coexists with pyrite, but sediment layer of 26.1–27.1 m are finer and the occurrence of greigite is not accompanied by pyrite. The different occurrence of greigite in the two layers suggests that different climate condition and sedimentary environment control its formation and preservation.