期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
微多普勒辅助的城市环境无人机编队检测方法
1
作者 张杰 朱宇 王洋 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3583-3591,共9页
针对城市复杂环境下电磁环境复杂、多径杂波和干扰信号密集等现象,传统的无人机(UAV)检测方法通过获取回波信号提取目标多普勒信息进行检测,易受到环境影响导致检测效果不理想。该文提出微多普勒辅助的城市环境无人机编队检测方法,充分... 针对城市复杂环境下电磁环境复杂、多径杂波和干扰信号密集等现象,传统的无人机(UAV)检测方法通过获取回波信号提取目标多普勒信息进行检测,易受到环境影响导致检测效果不理想。该文提出微多普勒辅助的城市环境无人机编队检测方法,充分利用无人机的微动特征,能够在复杂环境下提高检测精度。首先,参数化建模表征城市复杂环境下无人机旋翼的雷达回波微多普勒信号,利用YOLOv5s检测微多普勒闪烁脉冲,有效提取位置信息;然后,引入雷达信号分选方法的脉冲重复间隔(PRI)变换,分类获得无人机编队数量;最后,利用Kmeans算法验证无人机编队检测方法的准确性。结果表明,所提方法在信噪比2 dB时7架无人机的检测精度高于90%,能够用于城市复杂环境存在干扰脉冲、多径效应、局部脉冲丢失的无人机编队检测。 展开更多
关键词 无人机编队 编队检测 城市复杂环境 YOLOV5s 微多普勒提取
在线阅读 下载PDF
基于CK-Hough联合算法的人体微多普勒频率估计
2
作者 陈雨馨 彭意群 +1 位作者 柳润金 丁一鹏 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期3329-3341,共13页
为了准确地从雷达回波信号中提取运动目标特定部位的微多普勒频率,本文提出一种新颖的CKHough算法,该算法有效地结合了聚类分析和K近邻-霍夫(KNN-Hough)算法。首先,通过短时傅里叶变换获取雷达回波信号的时频谱图;其次,利用自适应模糊C... 为了准确地从雷达回波信号中提取运动目标特定部位的微多普勒频率,本文提出一种新颖的CKHough算法,该算法有效地结合了聚类分析和K近邻-霍夫(KNN-Hough)算法。首先,通过短时傅里叶变换获取雷达回波信号的时频谱图;其次,利用自适应模糊C均值算法对时频图进行聚类分析,在这一过程中,本文采用数据预处理技术自适应调整聚类类别数c以适应多样化应用场景,从而获得人体各散射部位的频域范围,有效地抑制了分量间的相互干扰;第三,通过改进度量函数的K近邻算法增强相邻时刻聚类结果的相关性,拟合各部位的瞬时频率曲线;最后,采用霍夫变换动态调整度量函数中权值μ的取值,得到目标微多普勒频率的精确估计结果。研究结果表明:本文提出的CK-Hough提取了直/曲线行走场景下人类目标四肢的微多普勒频率;与传统的峰值搜索算法、线性预测维特比算法以及基于Bezier-Hough模型的频率拟合算法相比,本文提出的CK-Hough算法在直线行走实验场景下,总频率的估计误差率分别降低了40.40%、45.47%和26.16%;在曲线行走实验场景下,其估计误差率分别降低了58.35%、68.35%和41.65%。 展开更多
关键词 多普勒频率提取 时频分析 自适应模糊C均值聚类 K近邻 霍夫变换
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部