开放世界目标检测(open world object detection,OWOD)是一个计算机视觉挑战,聚焦于现实世界环境,其不仅要检测出标记出的已知物体,还需要能处理训练过程中被忽视的未知物体。针对已知和未知物体的检测混淆、密集未知目标和小目标遗漏...开放世界目标检测(open world object detection,OWOD)是一个计算机视觉挑战,聚焦于现实世界环境,其不仅要检测出标记出的已知物体,还需要能处理训练过程中被忽视的未知物体。针对已知和未知物体的检测混淆、密集未知目标和小目标遗漏等问题,提出了一种新的基于偏移过滤和未知特征强化的开放世界目标检测器(offset filter and unknown-feature reinforcement for open world object detection,OFUR-OWOD)。首先设计一个未知类特征强化(unknown class feature reinforcement,UCFR)模块,通过自适应未知对象得分的方法来强化未知类目标特征,进而提高模型对未知类对象的训练准确度。然后,将重叠框偏移过滤器(overlapping box offset filter,OBOF)应用于目标预测框,根据目标位置和大小,获得不同偏移得分,以过滤冗余未知框。通过丰富实验证明,该方法在COCO-OOD和COCO-Mix上优于现有一些最先进的方法。展开更多
文摘开放世界目标检测(open world object detection,OWOD)是一个计算机视觉挑战,聚焦于现实世界环境,其不仅要检测出标记出的已知物体,还需要能处理训练过程中被忽视的未知物体。针对已知和未知物体的检测混淆、密集未知目标和小目标遗漏等问题,提出了一种新的基于偏移过滤和未知特征强化的开放世界目标检测器(offset filter and unknown-feature reinforcement for open world object detection,OFUR-OWOD)。首先设计一个未知类特征强化(unknown class feature reinforcement,UCFR)模块,通过自适应未知对象得分的方法来强化未知类目标特征,进而提高模型对未知类对象的训练准确度。然后,将重叠框偏移过滤器(overlapping box offset filter,OBOF)应用于目标预测框,根据目标位置和大小,获得不同偏移得分,以过滤冗余未知框。通过丰富实验证明,该方法在COCO-OOD和COCO-Mix上优于现有一些最先进的方法。