期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
K-最近邻的改进及其在文本分类中的应用
被引量:
7
1
作者
寇莎莎
魏振军
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第3期134-136,共3页
采用K近邻算法(Knearest neighbors,简称KNN)进行分类时,如果训练样本数量太大,那么搜索测试样本的K个最近邻时,算法的计算量很大.本文针对KNN的不足提出了一种改进方法.改进的KNN算法通过定义样本的延拓类和延拓能力,保留延拓能力强的...
采用K近邻算法(Knearest neighbors,简称KNN)进行分类时,如果训练样本数量太大,那么搜索测试样本的K个最近邻时,算法的计算量很大.本文针对KNN的不足提出了一种改进方法.改进的KNN算法通过定义样本的延拓类和延拓能力,保留延拓能力强的样本作为它延拓类中其它训练样本的代表,来缩减训练样本数量,达到减少算法计算量的目的.实验证明,改进的KNN算法具有很好的性能.
展开更多
关键词
延拓
半径
延拓类
延拓
能力
K最近邻算法
在线阅读
下载PDF
职称材料
题名
K-最近邻的改进及其在文本分类中的应用
被引量:
7
1
作者
寇莎莎
魏振军
机构
信息工程大学信息工程学院
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第3期134-136,共3页
文摘
采用K近邻算法(Knearest neighbors,简称KNN)进行分类时,如果训练样本数量太大,那么搜索测试样本的K个最近邻时,算法的计算量很大.本文针对KNN的不足提出了一种改进方法.改进的KNN算法通过定义样本的延拓类和延拓能力,保留延拓能力强的样本作为它延拓类中其它训练样本的代表,来缩减训练样本数量,达到减少算法计算量的目的.实验证明,改进的KNN算法具有很好的性能.
关键词
延拓
半径
延拓类
延拓
能力
K最近邻算法
Keywords
extension radius
extension category
extension capability
KNN
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
K-最近邻的改进及其在文本分类中的应用
寇莎莎
魏振军
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部