In this paper we introduce the notions of mean dimension and metric mean dimension for non-autonomous iterated function systems(NAIFSs for short)on countably infinite alphabets which can be regarded as generalizations...In this paper we introduce the notions of mean dimension and metric mean dimension for non-autonomous iterated function systems(NAIFSs for short)on countably infinite alphabets which can be regarded as generalizations of the mean dimension and the Lindenstrauss metric mean dimension for non-autonomous iterated function systems.We also show the relationship between the mean topological dimension and the metric mean dimension.展开更多
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mappin...The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.展开更多
基金国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2003AA116010)重庆市自然科学基金(the Natural Science Foundation of Chongqing City of China under Grant No.2004BB2182)
文摘In this paper we introduce the notions of mean dimension and metric mean dimension for non-autonomous iterated function systems(NAIFSs for short)on countably infinite alphabets which can be regarded as generalizations of the mean dimension and the Lindenstrauss metric mean dimension for non-autonomous iterated function systems.We also show the relationship between the mean topological dimension and the metric mean dimension.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA063901 and No.2006AA06A201)
文摘The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.