In this paper a dynamical model of a two degree of freedom,tendon based,parallel manipulator (TBPM) system is proposed. The motion control methods of the TBPM system were designed. Using MATLAB,the motion control simu...In this paper a dynamical model of a two degree of freedom,tendon based,parallel manipulator (TBPM) system is proposed. The motion control methods of the TBPM system were designed. Using MATLAB,the motion control simulation of this model TBPM system was implemented in preparation for actual experiments. The results of the simulation demonstrated that the response time of the system was in a reasonable range,the motion behavior of the platform was stable and the tension forces acting on the tendons were in a safe range and acceptable. Furthermore,the parameters of the controllers were optimized using MATLAB and better results for the time response were obtained.展开更多
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the se...A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.展开更多
A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temper...A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.展开更多
This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is si...This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure,flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control,the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot,it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition,the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances,and avoids the jitter of left and right wheels during the torque output.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
In this paper, a modified sliding-mode adaptive controller is derived to achieve stability and output regulation for a class of dynamical systems represented by a non-homogeneous differential equation with unknown tim...In this paper, a modified sliding-mode adaptive controller is derived to achieve stability and output regulation for a class of dynamical systems represented by a non-homogeneous differential equation with unknown time-varying coefficients and unknown force function. In this scheme, the control law is constructed in terms of estimated values for the bounds of the unknown coefficients, where these values are continuously updated by adaptive laws to ensure asymptotic convergence to zero for the output function. The proposed controller is applied to solve the problem of pitch angle regulation for a floating wind turbine with dynamic uncertainty and external disturbances. Numerical simulations are performed to demonstrate the validity of the designed controller to achieve the desired pitch angle for the floating turbine's body.展开更多
The power system controllers normally have more than one parameter.The distinguishability analysis of the controller parameters is to identify whether the optimal set of the parameters of the controllers is unique.It ...The power system controllers normally have more than one parameter.The distinguishability analysis of the controller parameters is to identify whether the optimal set of the parameters of the controllers is unique.It is difficult to obtain the analytic relationship between the objective of the optimization and the controller parameters,which means that the analytical method is not suitable for the distinguishability analysis.Therefore,a trajectory sensitivity based numerical method for the distinguishability analysis of the controller parameters is proposed in this paper.The relationship between the distinguishability and the sensitivities of the parameters is built.The magnitudes of the sensitivities are used to identify the key parameters,while the phase angles of the sensitivities are used to analyze the distinguishability of the key parameters.The distinguishability of the controller parameters of wind turbine with DFIG is studied using the proposed method,and dynamic simulations are performed to verify the results of the distinguishability analysis.展开更多
基金Project HI 370/24-1 supported by the German Research Community (DFG)
文摘In this paper a dynamical model of a two degree of freedom,tendon based,parallel manipulator (TBPM) system is proposed. The motion control methods of the TBPM system were designed. Using MATLAB,the motion control simulation of this model TBPM system was implemented in preparation for actual experiments. The results of the simulation demonstrated that the response time of the system was in a reasonable range,the motion behavior of the platform was stable and the tension forces acting on the tendons were in a safe range and acceptable. Furthermore,the parameters of the controllers were optimized using MATLAB and better results for the time response were obtained.
文摘A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
基金Supported by the Research Grants of the Research Council of Malaya
文摘A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.
基金Foundation items:National Science and Technology Major Project(No.2011ZX05021-001)China Postdoctoral Science Foundation(No.2019M663865)。
文摘This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure,flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control,the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot,it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition,the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances,and avoids the jitter of left and right wheels during the torque output.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
文摘In this paper, a modified sliding-mode adaptive controller is derived to achieve stability and output regulation for a class of dynamical systems represented by a non-homogeneous differential equation with unknown time-varying coefficients and unknown force function. In this scheme, the control law is constructed in terms of estimated values for the bounds of the unknown coefficients, where these values are continuously updated by adaptive laws to ensure asymptotic convergence to zero for the output function. The proposed controller is applied to solve the problem of pitch angle regulation for a floating wind turbine with dynamic uncertainty and external disturbances. Numerical simulations are performed to demonstrate the validity of the designed controller to achieve the desired pitch angle for the floating turbine's body.
基金supported by the National Natural Science Foundation of China(Grant Nos.51137002,51190102)Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)
文摘The power system controllers normally have more than one parameter.The distinguishability analysis of the controller parameters is to identify whether the optimal set of the parameters of the controllers is unique.It is difficult to obtain the analytic relationship between the objective of the optimization and the controller parameters,which means that the analytical method is not suitable for the distinguishability analysis.Therefore,a trajectory sensitivity based numerical method for the distinguishability analysis of the controller parameters is proposed in this paper.The relationship between the distinguishability and the sensitivities of the parameters is built.The magnitudes of the sensitivities are used to identify the key parameters,while the phase angles of the sensitivities are used to analyze the distinguishability of the key parameters.The distinguishability of the controller parameters of wind turbine with DFIG is studied using the proposed method,and dynamic simulations are performed to verify the results of the distinguishability analysis.