期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种基于预训练语言模型XLNet的测井曲线重构方法
1
作者 曹茂俊 赵宇杰 《计算机技术与发展》 2025年第2期183-190,共8页
在油田勘探开发过程中,测井曲线作为地球物理测井的第一手资料,能够真实反映地下空间的分布与特性。然而,在实际工作中,由于井壁垮塌和仪器故障等原因,部分测井数据常常出现失真或缺失。为解决这一问题,该文提出了一种基于预训练语言模... 在油田勘探开发过程中,测井曲线作为地球物理测井的第一手资料,能够真实反映地下空间的分布与特性。然而,在实际工作中,由于井壁垮塌和仪器故障等原因,部分测井数据常常出现失真或缺失。为解决这一问题,该文提出了一种基于预训练语言模型XLNet的测井曲线重构方法。该方法通过筛选地层地质岩性特征指数,获取高质量的训练样本,并将其作为预训练模型重构测井曲线的依据。构建并训练带有预训练权重信息的XLNet模型,使模型具备对复杂地层特性的理解和数据重构能力。在模型的构建与训练过程中,引入了预训练权重,并进一步结合了LoRA(Low-Rank Adaptation)模块,以充分利用测井曲线之间的高度依赖关系,进而辅助XLNet生成和补全失真或缺失的测井数据。与已知曲线重构模型:基于注意力表征的长短期记忆神经网络(LSTM-Attent)、双向门控神经网络(BiGRU)、TimesNet及XLNet相比,基于预训练语言模型XLNet-LoRA的测井曲线重构模型具有更高的预测准确性。 展开更多
关键词 测井曲线重构 深度学习 训练语言模型 xlnet网络 LoRA机制
在线阅读 下载PDF
基于XLNet—BiLSTM—AFF—CRF的谷物收割机械维修知识命名实体识别
2
作者 李先旺 刘赛虎 +1 位作者 黄忠祥 章霞东 《中国农机化学报》 北大核心 2025年第2期319-325,352,共8页
针对谷物收割机械维修实体识别过程中存在上下文语义特征缺失、长距离依赖信息不充足、实体复杂度较高等问题,提出一种引入注意力机制特征融合的谷物收割机械维修知识命名实体识别模型XLNet—BiLSTM—AFF—CRF。该模型采用基于Transfor... 针对谷物收割机械维修实体识别过程中存在上下文语义特征缺失、长距离依赖信息不充足、实体复杂度较高等问题,提出一种引入注意力机制特征融合的谷物收割机械维修知识命名实体识别模型XLNet—BiLSTM—AFF—CRF。该模型采用基于Transformer—XL的广义自回归XLNet预训练模型作为嵌入层提取字向量;然后使用双向长短时记忆网络(BiLSTM)获取上下文语义特征;利用注意力特征融合AFF将XLNet层输出与BiLSTM层输出进行组合,增强序列的语义信息;最后输入条件随机场CRF模型学习标注约束规则生成全局最优序列。在创建的维修语料库上展开试验,结果表明:所提模型的精确率、召回率和F1值分别为98.4%、97.6%和97.9%,均高于对比模型,验证所提模型的有效性。 展开更多
关键词 谷物收割机械 维修 命名实体识别 注意力机制 广义自回归训练语言模型(xlnet)
在线阅读 下载PDF
基于 XLNet 的农业命名实体识别方法 被引量:4
3
作者 陈明 顾凡 《河北农业大学学报》 CAS CSCD 北大核心 2023年第4期111-117,共7页
随着农业领域人工智能的研究不断深入,农业文本中命名实体识别是其他任务开展的基础之一。鉴于农业领域缺乏公开语料库,本文构建了自己的农业文本的注释语料库。针对目前存在的文本语义表达不足、缺乏语境特征、词向量多样性表达困难等... 随着农业领域人工智能的研究不断深入,农业文本中命名实体识别是其他任务开展的基础之一。鉴于农业领域缺乏公开语料库,本文构建了自己的农业文本的注释语料库。针对目前存在的文本语义表达不足、缺乏语境特征、词向量多样性表达困难等问题,本文提出了基于XLNet(Generalized Autoregressive Pretraining for Language Understanding,XLNet)的农业命名实体识别模型XLNet-IDCNN-CRF。嵌入层XLNet对于输入文本进行向量化表示,丰富文本的语义信息,缓解一词多义问题,通过编码层迭代膨胀卷积神经网络(Iterated Dilated Convolutional Neural Network,IDCNN)并行计算减少训练时间,获取文本特征信息,结合起来输入到输出层条件随机场模型(Conditional Random Field,CRF)识别标签信息,输出最优序列。本文在自建语料库上准确率达到95.58%,召回率92.36%,F1值93.91%,对比优于其他模型。实验结果表明,XLNet-IDCNNCRF模型能够较好地完成农业命名实体识别任务。 展开更多
关键词 农业文本 命名实体识别 xlnet模型 训练语言模型 迭代膨胀卷积
在线阅读 下载PDF
基于XLNet的中文文本情感分析 被引量:1
4
作者 李东金 单锐 +2 位作者 阴良魁 王芳 程宝娜 《燕山大学学报》 CAS 北大核心 2022年第6期547-553,共7页
针对Word2vec等静态词向量模型不能解决一词多义、传统情感分析模型不能同时提取文本的全局和局部信息问题,本文提出了结合广义自回归预训练语言模型(XLNet)的文本情感分析模型。首先利用XLNet表示文本特征,然后利用卷积神经网络提取文... 针对Word2vec等静态词向量模型不能解决一词多义、传统情感分析模型不能同时提取文本的全局和局部信息问题,本文提出了结合广义自回归预训练语言模型(XLNet)的文本情感分析模型。首先利用XLNet表示文本特征,然后利用卷积神经网络提取文本向量的局部特征,再利用双向门控循环单元提取文本的更深层次上下文信息,最后引入注意力机制,根据特征的重要性赋予特征不同的权重,并进行文本情感极性分析。仿真实验中将本文模型与5种常用的情感分析模型进行对比,验证了模型的准确率和优越性。 展开更多
关键词 情感分析 广义自回归训练语言模型 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
自然语言处理技术发展 被引量:26
5
作者 王海宁 《中兴通讯技术》 2022年第2期59-64,共6页
基于神经网络和深度学习的预训练语言模型为自然语言处理技术带来了突破性发展。基于自注意力机制的Transformer模型是预训练语言模型的基础。GPT、BERT、XLNet等大规模预训练语言模型均基于Transformer模型进行堆叠和优化。认为目前依... 基于神经网络和深度学习的预训练语言模型为自然语言处理技术带来了突破性发展。基于自注意力机制的Transformer模型是预训练语言模型的基础。GPT、BERT、XLNet等大规模预训练语言模型均基于Transformer模型进行堆叠和优化。认为目前依赖强大算力和海量数据的大规模预训练语言模型存在实用问题,指出轻量预训练语言模型是未来重要的发展方向。 展开更多
关键词 自然语言处理 训练语言模型 TRANSFORMER GPT BERT xlnet 模型优化
在线阅读 下载PDF
基于XLnet嵌入的中文命名实体识别方法 被引量:6
6
作者 郑洪浩 郝一诺 于洪涛 《信息工程大学学报》 2021年第4期473-477,共5页
命名实体识别是自然语言处理的核心任务。在基于深度学习的中文命名实体识别方法中,静态字向量无法表征字的多义性。针对该问题,提出了基于XLnet嵌入的中文命名实体识别方法。该方法首先通过XLnet(Generalized Autoregressive Pretraini... 命名实体识别是自然语言处理的核心任务。在基于深度学习的中文命名实体识别方法中,静态字向量无法表征字的多义性。针对该问题,提出了基于XLnet嵌入的中文命名实体识别方法。该方法首先通过XLnet(Generalized Autoregressive Pretraining for Language Understanding,XLnet)模型获取字级别的上下文表示。其次,利用BiLSTM-CRF模型获取文本依赖信息和标签信息。实验结果表明,该方法在人民日报、MSRA、Boson等3种数据集上分别达到91.9%、89.8%、74%的F1值,均高于其他主流的中文命名实体识别方法。 展开更多
关键词 中文命名实体识别 训练语言模型 xlnet模型
在线阅读 下载PDF
基于情感可控文本生成的可解释推荐系统 被引量:1
7
作者 邬俊 刘林 +1 位作者 卢香葵 罗芳媛 《闽南师范大学学报(自然科学版)》 2023年第4期24-34,共11页
文本生成是实现可解释推荐系统的有效技术途径之一,有利于提升用户对平台的满意度和信任感.然而,现有方法忽略了用户历史评论与目标物品之间的情感一致性问题,使得所生成的解释文本差强人意.以电商推荐场景为例,提出一种基于情感可控文... 文本生成是实现可解释推荐系统的有效技术途径之一,有利于提升用户对平台的满意度和信任感.然而,现有方法忽略了用户历史评论与目标物品之间的情感一致性问题,使得所生成的解释文本差强人意.以电商推荐场景为例,提出一种基于情感可控文本生成的可解释推荐框架.该框架由评分回归模型与解释生成模型串联而成,前者输出的预估评分作为情感查询,用于辅助后者从历史评论中甄选出情感一致的评论语料,并产生情感可控的解释文本.通过建立多任务联合学习机制,实现了评分回归模型与解释生成模型之间的双向互通和协同优化.四个电商场景下的实验结果表明,所提出方法在评分预测精度和文本生成质量两类指标上均具有显著的性能优势. 展开更多
关键词 可解释推荐系统 情感可控文本生成 评分回归 训练语言模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部