A novel 800nm Bragg mirror type of semiconductor saturable absorption mirror wit h low temperature method and surface state method combined absorber is presented .With which passive Kerr lens mode locking of Ti∶Al 2...A novel 800nm Bragg mirror type of semiconductor saturable absorption mirror wit h low temperature method and surface state method combined absorber is presented .With which passive Kerr lens mode locking of Ti∶Al 2O 3 laser pumped by argo n ion laser is realized,which produces pulses as short as 40fs.The spectrum band width is 56nm,which means that it can support the modelocking of 20fs.The pulse frequency is 97.5MHz;average output power is 300mW at the pump power of 4.45W.展开更多
The monolithic integration of vertical-cavity surface-emitting lasers (VCSEL) with photodetectors is very important in the application of free-space optical interconnects.Theoretical and experimental results on the re...The monolithic integration of vertical-cavity surface-emitting lasers (VCSEL) with photodetectors is very important in the application of free-space optical interconnects.Theoretical and experimental results on the resonant-cavity-enhanced (RCE) photodetector with VCSEL Structure are presented.The compatible requirement in input mirror reflectivity between the VCSEL and the RCE detector is achieved by precisely etching the top mirror.In this way,the RCE detector with relatively high quantum efficiency and necessary optical bandwidth has been obtained.[KH8/9D]展开更多
This dissertation aims at providing steady sensing for the shape detection of colonoscopes. The research especially deals with the key techniques of fiber bragg grating (FBG) large curvature sensor and sensor net, int...This dissertation aims at providing steady sensing for the shape detection of colonoscopes. The research especially deals with the key techniques of fiber bragg grating (FBG) large curvature sensor and sensor net, integrates the techniques of mechatronics and computer graphics, and develops real time FBG shape sensing system and incremental shape sensing system for colonoscopies.展开更多
New types of Bragg reflectors, multilayered periodic structures, based on alternating left-handed transmission line (LHTL) and right-handed transmission line (RHTL) are proposed. These new structures based on ideal mi...New types of Bragg reflectors, multilayered periodic structures, based on alternating left-handed transmission line (LHTL) and right-handed transmission line (RHTL) are proposed. These new structures based on ideal microstrip TLs and L-C lumped elements, are designed and analyzed. We report on unusual narrow transmission bands in such kind of structures. In such multilayered structures both Bragg reflectance and the Fabry-Perot resonance exist and the phenomenon of unusual transmission is a result of competition between these two transmission effects, in which the Fabry-Perot resonance is dominant. According to our simulation results we find that this unusual transmission property exits no matter if the electrical length of the LHTL layer cancels the electrical length of the RHTL layer or not.展开更多
The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time parab...The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long- term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency in- terference (RFI). These three types of sensors are evaluated from the view of EMIfRFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151 A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMIfRF1 levels are typically below the background noise of the ane- choic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable ten- sion. The proposed study is also a reference to the monitoring equipment selection of other radio tele- scopes and large structures.展开更多
In this paper, we mainly study the preparation of an optical biosensor based on porous silicon(PSi) Bragg mirror and its feasibility for biological detection. The quantum dot(QD) labeled biotin was pipetted onto strep...In this paper, we mainly study the preparation of an optical biosensor based on porous silicon(PSi) Bragg mirror and its feasibility for biological detection. The quantum dot(QD) labeled biotin was pipetted onto streptavidin functionalized PSi Bragg mirror samples, the affinity reaction between QD labeled biotin and streptavidin in PSi occurred, so the QDs were indirectly connected to the PSi. The fluorescence of QD enhanced the signal of biological reactions in PSi. The performance of the sensor is verified by detecting the fluorescence of the QD in PSi. Due to the fluorescence intensity of the QDs can be enhanced by PSi Bragg mirror, the sensitivity of the PSi optical biosensor will be improved.展开更多
The proton implantation is one of key procedures to confine the current diffusion in vertical cavity surface emitting lasers(VCSELs),in which the proton implanted depth and profile are main parameters.Threshold charac...The proton implantation is one of key procedures to confine the current diffusion in vertical cavity surface emitting lasers(VCSELs),in which the proton implanted depth and profile are main parameters.Threshold characteristics of VCSELs with various proton implanted depths are studied after optical,electrical and thermal fields have been simulated self-consistently in three dimensions.It is found that for VCSELs with confinement radius of 2 mm,increasing proton implanted depth can reduce the injected current threshold power and enhance the laser temperature in active region.Numerical results also indicate that there are optimal values for current aperture in proton implanted VCSELs.The minimum injected current threshold can be achieved in VCSELs with proton implantation near the active region and confinement radius of 1.5 mm,while the VCSELs with proton implantation in the middle of p-type distributed Bragg reflectors(DBRs) and confinement radius of 2.5 mm can realize the minimum temperature.展开更多
Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication waveleng...Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge_(25)Ga)5Sb_(10)S_(65)(doped with Er^(3+)) spacer layer surrounded by two 5-layer As_(40)Se_(60)/Ge_(25)Sb_(5)S_(70) reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.展开更多
Porous silicon microcavities (PSM) optical crystals consisting of a Fabry-Perot microcavity embedded between two distributed Bragg reflectors have been fabricated by electrochemical etching. Scanning electron microsco...Porous silicon microcavities (PSM) optical crystals consisting of a Fabry-Perot microcavity embedded between two distributed Bragg reflectors have been fabricated by electrochemical etching. Scanning electron microscopy (SEM) clearly depicted their physical sandwich construction. The optical feature of the PSM structure was tuned by varying the anodization parameters. Through proper thermal oxidation and surface chemical modifications, the resulting structures were employed as optical sensors for the detection of environmental pollutants including volatile organic vapors (i.e. acetonitrile, toluene, cyclohexane, chloroform, acetone and ethanol) and interior decoration gases (i.e. toluene, ammonia and formaldehyde). Fourier transform infrared spectroscopy (FTIR) spectra confirmed the effective thermal annealing and surface modification chemistry, and the sensing process was accompanied by recording the modified structures' optical responses when exposed to target analytes. The PSM optical sensors showed good stability, sensitivity and selectivity, implying promising applications in gas sensing and en- vironmental monitoring.展开更多
文摘A novel 800nm Bragg mirror type of semiconductor saturable absorption mirror wit h low temperature method and surface state method combined absorber is presented .With which passive Kerr lens mode locking of Ti∶Al 2O 3 laser pumped by argo n ion laser is realized,which produces pulses as short as 40fs.The spectrum band width is 56nm,which means that it can support the modelocking of 20fs.The pulse frequency is 97.5MHz;average output power is 300mW at the pump power of 4.45W.
文摘The monolithic integration of vertical-cavity surface-emitting lasers (VCSEL) with photodetectors is very important in the application of free-space optical interconnects.Theoretical and experimental results on the resonant-cavity-enhanced (RCE) photodetector with VCSEL Structure are presented.The compatible requirement in input mirror reflectivity between the VCSEL and the RCE detector is achieved by precisely etching the top mirror.In this way,the RCE detector with relatively high quantum efficiency and necessary optical bandwidth has been obtained.[KH8/9D]
文摘This dissertation aims at providing steady sensing for the shape detection of colonoscopes. The research especially deals with the key techniques of fiber bragg grating (FBG) large curvature sensor and sensor net, integrates the techniques of mechatronics and computer graphics, and develops real time FBG shape sensing system and incremental shape sensing system for colonoscopies.
基金Project (No. 2004CB719802) supported by the National Basic Re-search Program (973) of China
文摘New types of Bragg reflectors, multilayered periodic structures, based on alternating left-handed transmission line (LHTL) and right-handed transmission line (RHTL) are proposed. These new structures based on ideal microstrip TLs and L-C lumped elements, are designed and analyzed. We report on unusual narrow transmission bands in such kind of structures. In such multilayered structures both Bragg reflectance and the Fabry-Perot resonance exist and the phenomenon of unusual transmission is a result of competition between these two transmission effects, in which the Fabry-Perot resonance is dominant. According to our simulation results we find that this unusual transmission property exits no matter if the electrical length of the LHTL layer cancels the electrical length of the RHTL layer or not.
基金Supported by the National Natural Science Foundation of China(No.11173035,11273036,11303059)
文摘The active reflector of FAST ( five-hundred-meter aperture spherical radio telescope) is suppor- ted by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long- term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency in- terference (RFI). These three types of sensors are evaluated from the view of EMIfRFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151 A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMIfRF1 levels are typically below the background noise of the ane- choic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable ten- sion. The proposed study is also a reference to the monitoring equipment selection of other radio tele- scopes and large structures.
基金supported by the National Natural Science Foundation of China(Nos.61575168 and 61665012)the Xinjiang Science and Technology Project(No.201412112)
文摘In this paper, we mainly study the preparation of an optical biosensor based on porous silicon(PSi) Bragg mirror and its feasibility for biological detection. The quantum dot(QD) labeled biotin was pipetted onto streptavidin functionalized PSi Bragg mirror samples, the affinity reaction between QD labeled biotin and streptavidin in PSi occurred, so the QDs were indirectly connected to the PSi. The fluorescence of QD enhanced the signal of biological reactions in PSi. The performance of the sensor is verified by detecting the fluorescence of the QD in PSi. Due to the fluorescence intensity of the QDs can be enhanced by PSi Bragg mirror, the sensitivity of the PSi optical biosensor will be improved.
基金supported by the Natural Science Foundation of Hebei Province (No.F2007000096)the Research Foundation for the Doctoral Program of Higher Education of China (No.20070080001)
文摘The proton implantation is one of key procedures to confine the current diffusion in vertical cavity surface emitting lasers(VCSELs),in which the proton implanted depth and profile are main parameters.Threshold characteristics of VCSELs with various proton implanted depths are studied after optical,electrical and thermal fields have been simulated self-consistently in three dimensions.It is found that for VCSELs with confinement radius of 2 mm,increasing proton implanted depth can reduce the injected current threshold power and enhance the laser temperature in active region.Numerical results also indicate that there are optimal values for current aperture in proton implanted VCSELs.The minimum injected current threshold can be achieved in VCSELs with proton implantation near the active region and confinement radius of 1.5 mm,while the VCSELs with proton implantation in the middle of p-type distributed Bragg reflectors(DBRs) and confinement radius of 2.5 mm can realize the minimum temperature.
基金supported by the National Natural Science Foundation of China(No.61308092)the Natural Science Foundation of Liaoning Province of China(No.2013010590-401/20131116)
文摘Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge_(25)Ga)5Sb_(10)S_(65)(doped with Er^(3+)) spacer layer surrounded by two 5-layer As_(40)Se_(60)/Ge_(25)Sb_(5)S_(70) reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.
基金supported by the National Natural Science Foundation of China (20875062 & 81071249)Shenzhen Science and Technology Pro-jects (SY200806300225A)the "Hundred Talents Program" of Chinese Academy of Sciences
文摘Porous silicon microcavities (PSM) optical crystals consisting of a Fabry-Perot microcavity embedded between two distributed Bragg reflectors have been fabricated by electrochemical etching. Scanning electron microscopy (SEM) clearly depicted their physical sandwich construction. The optical feature of the PSM structure was tuned by varying the anodization parameters. Through proper thermal oxidation and surface chemical modifications, the resulting structures were employed as optical sensors for the detection of environmental pollutants including volatile organic vapors (i.e. acetonitrile, toluene, cyclohexane, chloroform, acetone and ethanol) and interior decoration gases (i.e. toluene, ammonia and formaldehyde). Fourier transform infrared spectroscopy (FTIR) spectra confirmed the effective thermal annealing and surface modification chemistry, and the sensing process was accompanied by recording the modified structures' optical responses when exposed to target analytes. The PSM optical sensors showed good stability, sensitivity and selectivity, implying promising applications in gas sensing and en- vironmental monitoring.