The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
Uncertainties are common in the dating of paleoearthquakes.To improve the credibility of the dating of paleoearthquakes,analysis was done on fault activity,sedimentary environment and seismo-geomorphology to investiga...Uncertainties are common in the dating of paleoearthquakes.To improve the credibility of the dating of paleoearthquakes,analysis was done on fault activity,sedimentary environment and seismo-geomorphology to investigate paleoearthquakes along the Zemuhe active fault zone.Grouped trenches were excavated near Daqingliangzi,which revealed three palaeoearthquake events aged 160a,3100a and 5500a~8900a,respectively,including recurrence intervals of about 3000a.Sedimentary processes related to strike-slip fault type earthquakes were discussed,and a sedimentary model was put forward for strike-slip faults at hillsides where drumlin and reverse scarp developed.展开更多
The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zo...The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.展开更多
The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibe...The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9 ± 1.6 km, with a shortening rate of 17.8 ± 2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3 ± 0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshulhe-Xiaojiang fault system.展开更多
The MS6.4 Menyuan earthquake occurred on the northern side of the Lenglongling fault(LLLF) in the mid-western of the Qilian-Haiyuan fault zone on January 21, 2016. The earthquake epicenter was distant from the Minle-D...The MS6.4 Menyuan earthquake occurred on the northern side of the Lenglongling fault(LLLF) in the mid-western of the Qilian-Haiyuan fault zone on January 21, 2016. The earthquake epicenter was distant from the Minle-Damaying and Huangcheng-Shuangta faults, eastern of the Northern Qilian Shan fault zone. A near northwest-striking rupture plane intersects the two faults at a certain angle. The focal mechanism solution shows that this was a thrust-type earthquake, slightly different from the strike-slip movement with a thrust component of the LLLF. Field geological mapping, tectonic geomorphology analysis, trench excavation and 14 C dating reveal that(1) the LLLF has been obviously active since the Holocene, and may behave with characteristic slip behavior and produce M_W7.3–7.5 earthquakes;(2) the LLLF appears as a flower structure in terms of structure style, and dips NNE at a steep angle; and(3) the most recent earthquake event occurred after 1815–1065 a BP. An associated fault, the Northern Lenglongling fault(NLLLF), is located at the northwestern end of the LLLF. Consequently, the NLLLF was continually subject to tectonic pushing effects from the left-lateral shear at the end of the LLLF, and, accordingly, it bent and rotated outward tectonically.Subsequently, the fault deviated from the dominant rupture azimuth and activity weakened. In the late Quaternary, it behaved as a thrust fault with no obvious deformation at the surface. This is indicated by the arc shape, with a micro-protrusion northeastward,and no geologic or geomorphic signs of surface rupturing since the late Quaternary. However, such faults could still rupture at depth, producing moderate-strong earthquakes. The geometric and kinematic properties of the NLLLF are in good agreement with the occurrence and kinematic properties of nodal plane 2, and with the distribution characteristics of the aftershocks and seismic intensity. Therefore, the NLLLF is a more suitable seismogenic structure for the MS 6.4 Menyuan earthquake. In addition, the thrust movement of the NLLLF accommodates subsequent movement of the LLLF. During the historical evolution of the NLLLF,the LLLF and the NLLLF have affected the local topography through tectonic uplift.展开更多
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金funded by the National Key Technology R&D Program(2004CB418401)
文摘Uncertainties are common in the dating of paleoearthquakes.To improve the credibility of the dating of paleoearthquakes,analysis was done on fault activity,sedimentary environment and seismo-geomorphology to investigate paleoearthquakes along the Zemuhe active fault zone.Grouped trenches were excavated near Daqingliangzi,which revealed three palaeoearthquake events aged 160a,3100a and 5500a~8900a,respectively,including recurrence intervals of about 3000a.Sedimentary processes related to strike-slip fault type earthquakes were discussed,and a sedimentary model was put forward for strike-slip faults at hillsides where drumlin and reverse scarp developed.
文摘The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.
基金the National Natural Science Foundation of China(40472109)"973"State Key Basic Research Project of China(2004CB418410)Joint Eanthquake Science Foundation of China(105066)
文摘The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9 ± 1.6 km, with a shortening rate of 17.8 ± 2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3 ± 0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshulhe-Xiaojiang fault system.
基金supported by a Special Project on Earthquake Research, the China Active Fault Survey Project-The South-North Seismic Zone Northern Segment (Grant No. 201408023)Fundamental Research Funds in Institute of Crustal Dynamics, China Earthquake Administration (Grant No. ZDJ2015-16)
文摘The MS6.4 Menyuan earthquake occurred on the northern side of the Lenglongling fault(LLLF) in the mid-western of the Qilian-Haiyuan fault zone on January 21, 2016. The earthquake epicenter was distant from the Minle-Damaying and Huangcheng-Shuangta faults, eastern of the Northern Qilian Shan fault zone. A near northwest-striking rupture plane intersects the two faults at a certain angle. The focal mechanism solution shows that this was a thrust-type earthquake, slightly different from the strike-slip movement with a thrust component of the LLLF. Field geological mapping, tectonic geomorphology analysis, trench excavation and 14 C dating reveal that(1) the LLLF has been obviously active since the Holocene, and may behave with characteristic slip behavior and produce M_W7.3–7.5 earthquakes;(2) the LLLF appears as a flower structure in terms of structure style, and dips NNE at a steep angle; and(3) the most recent earthquake event occurred after 1815–1065 a BP. An associated fault, the Northern Lenglongling fault(NLLLF), is located at the northwestern end of the LLLF. Consequently, the NLLLF was continually subject to tectonic pushing effects from the left-lateral shear at the end of the LLLF, and, accordingly, it bent and rotated outward tectonically.Subsequently, the fault deviated from the dominant rupture azimuth and activity weakened. In the late Quaternary, it behaved as a thrust fault with no obvious deformation at the surface. This is indicated by the arc shape, with a micro-protrusion northeastward,and no geologic or geomorphic signs of surface rupturing since the late Quaternary. However, such faults could still rupture at depth, producing moderate-strong earthquakes. The geometric and kinematic properties of the NLLLF are in good agreement with the occurrence and kinematic properties of nodal plane 2, and with the distribution characteristics of the aftershocks and seismic intensity. Therefore, the NLLLF is a more suitable seismogenic structure for the MS 6.4 Menyuan earthquake. In addition, the thrust movement of the NLLLF accommodates subsequent movement of the LLLF. During the historical evolution of the NLLLF,the LLLF and the NLLLF have affected the local topography through tectonic uplift.