针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法...针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法。在原Grubbs法则的基础上,引入自适应迭代,在训练数据中,对粗差进行识别,并设定粗差剔除完成的指标参数,从而降低原方法中发生误判或漏判的概率,并利用局部加权线性回归法通过预处理后的训练样本数据来建立区域高程异常拟合模型。实验结果表明,相较于传统Grubbs法则,改进后的Grubbs法对于高程异常数据中的粗差剔除更为快速有效,且利用局部加权线性回归法所构建的区域高程异常拟合模型的预测精度及稳定性也得到一定程度的提高,对今后工程中的测高工作具备一定的参考意义。展开更多
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co...How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.展开更多
The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim...The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods p...Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solu- tion. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital ren- dezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vec- tor theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large ec- centricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentric- ity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution.展开更多
This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed ...This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications.展开更多
文摘针对测量数据中粗差干扰及高程异常拟合方法选择较为困难的问题,结合格拉布斯(Grubbs)法判别粗差的原理,提出一种改进格拉布斯(Improved Grubbs,IGrubbs)结合局部加权线性回归(Local Weighted Linear Regression,LWLR)的拟合模型构建法。在原Grubbs法则的基础上,引入自适应迭代,在训练数据中,对粗差进行识别,并设定粗差剔除完成的指标参数,从而降低原方法中发生误判或漏判的概率,并利用局部加权线性回归法通过预处理后的训练样本数据来建立区域高程异常拟合模型。实验结果表明,相较于传统Grubbs法则,改进后的Grubbs法对于高程异常数据中的粗差剔除更为快速有效,且利用局部加权线性回归法所构建的区域高程异常拟合模型的预测精度及稳定性也得到一定程度的提高,对今后工程中的测高工作具备一定的参考意义。
基金National Key Science & Technology Special Projects(Grant No.2008ZX05000-004)CNPC Projects(Grant No.2008E-0610-10).
文摘How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.
文摘The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10832004 and 11072122)
文摘Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solu- tion. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital ren- dezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vec- tor theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large ec- centricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentric- ity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution.
文摘This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications.