A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhe...A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.展开更多
This paper studies the thermoelastic fracture in a solid under non-classical Fourier heat conduction.The temperature field and the associated thermal stresses are solved by the dual integral equation technique.Both th...This paper studies the thermoelastic fracture in a solid under non-classical Fourier heat conduction.The temperature field and the associated thermal stresses are solved by the dual integral equation technique.Both thermally insulated crack and heated crack are considered.It is found that the crack tip thermal stress is singular and can be expressed in terms of the thermal stress intensity factor in a closed-form.Numerical results show that the crack considerably amplifies the local thermal stresses,confirming the significance of the effect of non-classical heat conduction on the thermoelastic fracture mechanics of materials.展开更多
基金Project(51474251) supported by the National Natural Science Foundation of China
文摘A calculation formula of thermal-hydro-mechanical(THM)coupling crack initiation rate for brittle rock was derived based on the energy conservation law.The self-designed THM coupling fracture test with conductive adhesive electrical measurement method was applied to measuring the THM coupling crack propagation rate of brittle rock continuously.Research results show that both calculation and test results of crack initiation rate increased with increase of the temperature and the hydraulic pressure.They are almost in good agreement,which can prove validity of the calculation formula of THM coupling crack initiation rate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10972067 and 11172081)
文摘This paper studies the thermoelastic fracture in a solid under non-classical Fourier heat conduction.The temperature field and the associated thermal stresses are solved by the dual integral equation technique.Both thermally insulated crack and heated crack are considered.It is found that the crack tip thermal stress is singular and can be expressed in terms of the thermal stress intensity factor in a closed-form.Numerical results show that the crack considerably amplifies the local thermal stresses,confirming the significance of the effect of non-classical heat conduction on the thermoelastic fracture mechanics of materials.