Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order...Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.展开更多
In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new s...In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new self-consistent sources is obtained and its solutions are derived.展开更多
文摘Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10871165 and 10926036the Education Department under Grant No.Y200906909the Natural Science Foundation of under Grant No.Y6100126 of Zhejiang Province
文摘In this letter we consider a limit symmetry of the modified KdV equation and its application. The similarity reduction leads to limit solutions of the modified KdV equation. Besides, a modified KdV equation with new self-consistent sources is obtained and its solutions are derived.