Based on the Marshall-Palmer,Weibull raindrop size distribution and Mie electromagnetic scattering model,the relationships of attenuation coefficient of terahertz(THz) atmospheric window waves with precipitation rate ...Based on the Marshall-Palmer,Weibull raindrop size distribution and Mie electromagnetic scattering model,the relationships of attenuation coefficient of terahertz(THz) atmospheric window waves with precipitation rate and temperature are studied.Furthermore,combined with the loss of electromagnetic wave transmission in free space,the attenuation of THz communication and the transmission of current mobile communication signals through rain are compared and analyzed.The results show that the attenuation coefficient of THz transmission is increased with increasing precipitation rate,the difference of attenuation coefficient at different THz window waves is small,and the maximum difference is about 3 dB.The rain attenuation of THz wave is first decreased and then increased with increasing temperature,but the temperature has little effect on it.The attenuation of THz wave through rain is much larger than that of mobile communication signal.展开更多
Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer.The transmission curves of two different ...Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer.The transmission curves of two different samples with the thicknesses of 50 and 150 nm at 7.5 K show dips at 480,545 GHz,respectively,which origin from the different capacities and inductances of the samples.For the sample of 50 nm,the dip shifts to lower frequency,also decreases in depth and increases in width with temperature or field increasing below T c of Nb film,while the sample of 150 nm does not show such a phenomenon.This thickness-dependent transmission behavior is due to the kinetic inductance and conductivity change of superfluid electrons in Nb film and may suggest a practical tunable THz filter based on the thinner samples.展开更多
文摘Based on the Marshall-Palmer,Weibull raindrop size distribution and Mie electromagnetic scattering model,the relationships of attenuation coefficient of terahertz(THz) atmospheric window waves with precipitation rate and temperature are studied.Furthermore,combined with the loss of electromagnetic wave transmission in free space,the attenuation of THz communication and the transmission of current mobile communication signals through rain are compared and analyzed.The results show that the attenuation coefficient of THz transmission is increased with increasing precipitation rate,the difference of attenuation coefficient at different THz window waves is small,and the maximum difference is about 3 dB.The rain attenuation of THz wave is first decreased and then increased with increasing temperature,but the temperature has little effect on it.The attenuation of THz wave through rain is much larger than that of mobile communication signal.
基金supported by the Science Foundation of the Chinese Academy of Sciences (Grant No.KJCX2-SW-W20)the National Basic Research Program of China (Grant No.2011CB921702)
文摘Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer.The transmission curves of two different samples with the thicknesses of 50 and 150 nm at 7.5 K show dips at 480,545 GHz,respectively,which origin from the different capacities and inductances of the samples.For the sample of 50 nm,the dip shifts to lower frequency,also decreases in depth and increases in width with temperature or field increasing below T c of Nb film,while the sample of 150 nm does not show such a phenomenon.This thickness-dependent transmission behavior is due to the kinetic inductance and conductivity change of superfluid electrons in Nb film and may suggest a practical tunable THz filter based on the thinner samples.