Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt...Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt contained in the salt water were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), electron probe micro analyzer (EPMA), X-ray diffraction (XRD), infrared transmission spectroscope (IR), and atmospheric corrosion monitor (ACM). The results showed that, with the deposition, atmospheric corrosion of AA2024 could occur when the relative humidity (RH) was lower than 30%. A main crystalline component of corrosion products, layered double hydroxides (LDH), [Mg1-xAlx(OH)2]^x+ Clx-·mH2O (LDH-C1), was determined, which meant that magnesium ion played an important role in the corrosion process. It not only facilitated the corrosion as a result of deliquescence, but also was involved in the corrosion process as a reactant.展开更多
Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginn...Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginning of exposure and then slowly with time.The corrosion morphologies were observed and the results showed that NaCl deposition resulted in the occurrence of localized corrosion.The composition of corrosion product was analyzed using X-ray photo electron spectroscopy.It was suggested that the corrosion product was a mixture of oxide and hydroxide of magnesium and aluminum.展开更多
基金Project(51131007) supported by the National Natural Science Foundation of China
文摘Atmospheric corrosion of aluminum alloy 2024 (AA2024) with salt lake water was simulated through a laboratory- accelerated test of cyclic wet-dry and electrochemical techniques. Effects of the soluble magnesium salt contained in the salt water were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), electron probe micro analyzer (EPMA), X-ray diffraction (XRD), infrared transmission spectroscope (IR), and atmospheric corrosion monitor (ACM). The results showed that, with the deposition, atmospheric corrosion of AA2024 could occur when the relative humidity (RH) was lower than 30%. A main crystalline component of corrosion products, layered double hydroxides (LDH), [Mg1-xAlx(OH)2]^x+ Clx-·mH2O (LDH-C1), was determined, which meant that magnesium ion played an important role in the corrosion process. It not only facilitated the corrosion as a result of deliquescence, but also was involved in the corrosion process as a reactant.
基金Projects(50671005,50971093)supported by the National Natural Science Foundation of ChinaProject(2007CB613705)supported by the National Basic Research Program of China
文摘Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginning of exposure and then slowly with time.The corrosion morphologies were observed and the results showed that NaCl deposition resulted in the occurrence of localized corrosion.The composition of corrosion product was analyzed using X-ray photo electron spectroscopy.It was suggested that the corrosion product was a mixture of oxide and hydroxide of magnesium and aluminum.