讨论多角形域上椭圆混合边值问题Δu=finΩ,u=0onΓ1, u n=0onΓ2,的正则性,这里边界Γ=Γ1+Γ2,且Γ1有正测度.若f∈L2(Ω),则解u∈Hρ(Ω),ρ=1+min(12α0,1β0)-ε,ε>0,其中α0π是Γ1与Γ2的所有交接点处的最大内角,而β0π是Γ...讨论多角形域上椭圆混合边值问题Δu=finΩ,u=0onΓ1, u n=0onΓ2,的正则性,这里边界Γ=Γ1+Γ2,且Γ1有正测度.若f∈L2(Ω),则解u∈Hρ(Ω),ρ=1+min(12α0,1β0)-ε,ε>0,其中α0π是Γ1与Γ2的所有交接点处的最大内角,而β0π是Γ1内或Γ2内角点处的最大内角.展开更多
A class of nonlinear parabolic equation on a polygonal domain Ω R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based o...A class of nonlinear parabolic equation on a polygonal domain Ω R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based on the partition of unity method. We give the construction and convergence analysis for the semi-discrete and the fully discrete finite element methods. Moreover, we prove that the error of the discrete variational problem has good approximation properties. Our results are valid for any spatial dimensions. A numerical example to illustrate the theoretical results is also given.展开更多
文摘讨论多角形域上椭圆混合边值问题Δu=finΩ,u=0onΓ1, u n=0onΓ2,的正则性,这里边界Γ=Γ1+Γ2,且Γ1有正测度.若f∈L2(Ω),则解u∈Hρ(Ω),ρ=1+min(12α0,1β0)-ε,ε>0,其中α0π是Γ1与Γ2的所有交接点处的最大内角,而β0π是Γ1内或Γ2内角点处的最大内角.
基金Supported by the Natural Science Foundation of Hunan under Grant No. 06C713.
文摘A class of nonlinear parabolic equation on a polygonal domain Ω R2 is inves- tigated in this paper. We introduce a finite element method on overlapping non-matching grids for the nonlinear parabolic equation based on the partition of unity method. We give the construction and convergence analysis for the semi-discrete and the fully discrete finite element methods. Moreover, we prove that the error of the discrete variational problem has good approximation properties. Our results are valid for any spatial dimensions. A numerical example to illustrate the theoretical results is also given.