期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于强化局部特征的3D点云分类与分割网络
被引量:
1
1
作者
陈丽芳
魏梦如
《应用科学学报》
CAS
CSCD
北大核心
2022年第2期328-337,共10页
在点云的处理过程中,许多深度学习网络未能充分考虑局部点之间的复杂关系,导致大量空间几何信息丢失。针对该问题,提出了一个强化局部特征的网络,用于点云的目标分类和语义分割。该网络通过设计编码单元对点的多方向信息进行编码;通过...
在点云的处理过程中,许多深度学习网络未能充分考虑局部点之间的复杂关系,导致大量空间几何信息丢失。针对该问题,提出了一个强化局部特征的网络,用于点云的目标分类和语义分割。该网络通过设计编码单元对点的多方向信息进行编码;通过注意力机制学习采样分组后形成局部点云的特征。同时提出了一种新的多维损失函数,结合使用交叉熵损失函数与中心损失函数作用于分类任务。在数据集ModelNet40和ScanNet上进行了大量实验,结果表明:该网络在点云的目标分类和语义分割任务上表现出较好的性能。
展开更多
关键词
点云分类与分割
编码单元
注意力机制
多维损失函数
在线阅读
下载PDF
职称材料
题名
基于强化局部特征的3D点云分类与分割网络
被引量:
1
1
作者
陈丽芳
魏梦如
机构
江南大学人工智能与计算机学院
出处
《应用科学学报》
CAS
CSCD
北大核心
2022年第2期328-337,共10页
文摘
在点云的处理过程中,许多深度学习网络未能充分考虑局部点之间的复杂关系,导致大量空间几何信息丢失。针对该问题,提出了一个强化局部特征的网络,用于点云的目标分类和语义分割。该网络通过设计编码单元对点的多方向信息进行编码;通过注意力机制学习采样分组后形成局部点云的特征。同时提出了一种新的多维损失函数,结合使用交叉熵损失函数与中心损失函数作用于分类任务。在数据集ModelNet40和ScanNet上进行了大量实验,结果表明:该网络在点云的目标分类和语义分割任务上表现出较好的性能。
关键词
点云分类与分割
编码单元
注意力机制
多维损失函数
Keywords
point cloud classification and segmentation
encoding unit
attention mechanism
multidimensional loss function
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于强化局部特征的3D点云分类与分割网络
陈丽芳
魏梦如
《应用科学学报》
CAS
CSCD
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部