针对阶梯块谱下的材料疲劳寿命预测问题,尤其是已有相关非线性模型的计算参数依赖大量试验数据或较难选取合适的基准值,导致在实际工程中应用有一定局限性。提出了一种新的基于相邻载荷的作用系数α_(i)=(S_(i+1)/S_(i))1/b lg K,该系...针对阶梯块谱下的材料疲劳寿命预测问题,尤其是已有相关非线性模型的计算参数依赖大量试验数据或较难选取合适的基准值,导致在实际工程中应用有一定局限性。提出了一种新的基于相邻载荷的作用系数α_(i)=(S_(i+1)/S_(i))1/b lg K,该系数中两个参数b、K来自材料疲劳寿命关系式S=KN^(-b)。结合前人的二级、三级、四级应力加载试验结果,分别计算并对比了与多种疲劳损伤模型的结果。结果表明,新模型在疲劳寿命/损伤的预测结果优于Miner模型、Manson模型、Subramanyan模型及Hashin模型,可更为准确地预测阶梯块谱下的疲劳寿命/损伤。展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
文摘针对阶梯块谱下的材料疲劳寿命预测问题,尤其是已有相关非线性模型的计算参数依赖大量试验数据或较难选取合适的基准值,导致在实际工程中应用有一定局限性。提出了一种新的基于相邻载荷的作用系数α_(i)=(S_(i+1)/S_(i))1/b lg K,该系数中两个参数b、K来自材料疲劳寿命关系式S=KN^(-b)。结合前人的二级、三级、四级应力加载试验结果,分别计算并对比了与多种疲劳损伤模型的结果。结果表明,新模型在疲劳寿命/损伤的预测结果优于Miner模型、Manson模型、Subramanyan模型及Hashin模型,可更为准确地预测阶梯块谱下的疲劳寿命/损伤。
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.