期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Tabu Search集中性和多样性自动平衡下的增强搜索策略 被引量:3
1
作者 雷开友 王芳 +2 位作者 贺一 邱玉辉 刘光远 《计算机科学》 CSCD 北大核心 2005年第11期161-163,共3页
在禁忌搜索算法中,集中性搜索与多样性搜索是缺一不可但又相互矛盾的两个方面。本文提出了一种在禁忌搜索集中性和多样性自动平衡下的增强搜索策略算法,这种算法在集中性搜索与多样性搜索之间保持合理平衡的同时,又进一步对结果加强集... 在禁忌搜索算法中,集中性搜索与多样性搜索是缺一不可但又相互矛盾的两个方面。本文提出了一种在禁忌搜索集中性和多样性自动平衡下的增强搜索策略算法,这种算法在集中性搜索与多样性搜索之间保持合理平衡的同时,又进一步对结果加强集中性搜索或者多样性搜索,以获全局最优解。以组合优化中的典型难题 TSP为例,通过自动更换邻域、候选集,较好地解决了集中性搜索与多样性搜索的冲突。仿真实验表明,解的质量提高了,验证该算法有效。 展开更多
关键词 禁忌搜索 集中性搜索 多样性搜索 TSP问题 搜索策略 自动平衡 多样性 集中性 SEARCH Tabu
在线阅读 下载PDF
图像多样性重排序技术综述
2
作者 李靖 冀中 《信息技术》 2013年第6期190-192,196,共4页
近年来互联网呈现出了爆炸式的增长,而与日常生活息息相关的图像资源变得更加重要,如何能够准确地获取所需的图像资源是当前多媒体搜索领域需要重点解决的问题。目前的大多工作围绕图像的相关性搜索重排序展开,对多样性搜索重排序的研... 近年来互联网呈现出了爆炸式的增长,而与日常生活息息相关的图像资源变得更加重要,如何能够准确地获取所需的图像资源是当前多媒体搜索领域需要重点解决的问题。目前的大多工作围绕图像的相关性搜索重排序展开,对多样性搜索重排序的研究较少。相关性重排序是指对于返回结果来说,都是将相关的样本排在结果集的前列,但是很少考虑样本相互之间的联系,而多样性重排序是为了提高返回结果的多样性,也就是覆盖主题的多样性,以降低相关重排序中带来的信息冗余问题。文中对当前常见的几种算法评价并进行比较,并通过不同于文本重排的评价准则对性能进行评价。 展开更多
关键词 图像搜索重排序 多样性搜索重排序 随机游走 基于内容的图像搜索
在线阅读 下载PDF
基于Beam Search算法的集装箱装载问题研究 被引量:1
3
作者 杨会志 《软件导刊》 2015年第7期106-108,共3页
针对具有优先装载约束的集装箱装载问题,对Partial Beam Search算法进行了改进。在搜索过程中去除相似中间状态,增加了搜索过程的多样性,提高了算法的搜索效率。实验结果证明了算法的有效性。
关键词 集装箱装载问题 BEAM Search算法 优先装载约束 搜索过程多样性
在线阅读 下载PDF
Optimization algorithm based on kinetic-molecular theory 被引量:2
4
作者 范朝冬 欧阳红林 +1 位作者 张英杰 艾朝阳 《Journal of Central South University》 SCIE EI CAS 2013年第12期3504-3512,共9页
Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular... Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed. 展开更多
关键词 optimization algorithm heuristic search algorithm kinetic-molecular theory DIVERSITY CONVERGENCE
在线阅读 下载PDF
Immune response-based algorithm for optimization of dynamic environments
5
作者 史旭华 钱锋 《Journal of Central South University》 SCIE EI CAS 2011年第5期1563-1571,共9页
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu... A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments. 展开更多
关键词 dynamic optimization artificial immune algorithms immune response multi-scale variation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部