期刊导航
期刊开放获取
VIP36
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于物理模型的级联生成对抗网络加速定量多参数磁共振成像
1
作者
刘羽轩
楚智钦
张煜
《南方医科大学学报》
CAS
CSCD
北大核心
2023年第8期1402-1409,共8页
目的探讨基于物理模型的级联生成对抗网络使用原始的多回波多线圈k空间数据加速定量多回波多参数磁共振成像方法的可行性分析与解释。方法提出了一种基于物理模型的级联生成对抗网络,利用多域信息联合训练以及通过系统矩阵学习图像重建...
目的探讨基于物理模型的级联生成对抗网络使用原始的多回波多线圈k空间数据加速定量多回波多参数磁共振成像方法的可行性分析与解释。方法提出了一种基于物理模型的级联生成对抗网络,利用多域信息联合训练以及通过系统矩阵学习图像重建所需的关键参数,并自适应地优化k空间生成器和图像生成器结构来增强图像特征信息以获得高质量的重建图像。使用原始的多回波多线圈k数据加速多对比度多参数磁共振图像成像。提出了基于物理驱动的深度学习重建方法,通过建立系统矩阵函数而不是直接通过模型端到端训练的方式来增加模型的泛化能力和提高模型性能。结果在整体回波图像质量评价方面,该模型在80例测试集上的重建图像的平均PSNR值为34.13,SSIM为0.965,NRMSE为0.114,大幅度优于本文的其它对比方法。在多对比度多参数图像重建方面,该模型评估的PDW、T1W以及T2*Map的PSNR分别为38.87、35.62和34.38,在定量上也显著优于其它对比方法,并拟合出更为清晰的大脑灰质、白质和脑脊液特征。除此以外,在重建时间相差不到10%的前提下与现有的方法相比,本研究的方法对PSNR、SSIM和NRMSE的指标提升最高可达到20%。结论相比现有的方法,基于物理模型的级联生成对抗网络方法可以重建出更多的图像细节和特征,从而提高了图像的质量和准确性,并有望将其应用于临床诊疗流程中。
展开更多
关键词
加速磁共振成像
多对比度多参数
物理模型
级联生成对抗网络
多域联合学习
在线阅读
下载PDF
职称材料
题名
基于物理模型的级联生成对抗网络加速定量多参数磁共振成像
1
作者
刘羽轩
楚智钦
张煜
机构
南方医科大学生物医学工程学院//广东省医学图像处理重点实验室
出处
《南方医科大学学报》
CAS
CSCD
北大核心
2023年第8期1402-1409,共8页
基金
国家自然科学基金(61971213)。
文摘
目的探讨基于物理模型的级联生成对抗网络使用原始的多回波多线圈k空间数据加速定量多回波多参数磁共振成像方法的可行性分析与解释。方法提出了一种基于物理模型的级联生成对抗网络,利用多域信息联合训练以及通过系统矩阵学习图像重建所需的关键参数,并自适应地优化k空间生成器和图像生成器结构来增强图像特征信息以获得高质量的重建图像。使用原始的多回波多线圈k数据加速多对比度多参数磁共振图像成像。提出了基于物理驱动的深度学习重建方法,通过建立系统矩阵函数而不是直接通过模型端到端训练的方式来增加模型的泛化能力和提高模型性能。结果在整体回波图像质量评价方面,该模型在80例测试集上的重建图像的平均PSNR值为34.13,SSIM为0.965,NRMSE为0.114,大幅度优于本文的其它对比方法。在多对比度多参数图像重建方面,该模型评估的PDW、T1W以及T2*Map的PSNR分别为38.87、35.62和34.38,在定量上也显著优于其它对比方法,并拟合出更为清晰的大脑灰质、白质和脑脊液特征。除此以外,在重建时间相差不到10%的前提下与现有的方法相比,本研究的方法对PSNR、SSIM和NRMSE的指标提升最高可达到20%。结论相比现有的方法,基于物理模型的级联生成对抗网络方法可以重建出更多的图像细节和特征,从而提高了图像的质量和准确性,并有望将其应用于临床诊疗流程中。
关键词
加速磁共振成像
多对比度多参数
物理模型
级联生成对抗网络
多域联合学习
Keywords
accelerated magnetic resonance imaging
multi-contrast and multi-parameter
physical model
cascaded generative adversarial networks
multi-domain joint learning
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
R445.2 [医药卫生—影像医学与核医学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于物理模型的级联生成对抗网络加速定量多参数磁共振成像
刘羽轩
楚智钦
张煜
《南方医科大学学报》
CAS
CSCD
北大核心
2023
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部