In this paper the new notion of multivariate least-squares orthogonal poly-nomials from the rectangular form is introduced. Their existence and uniqueness isstudied and some methods for their recursive computation are...In this paper the new notion of multivariate least-squares orthogonal poly-nomials from the rectangular form is introduced. Their existence and uniqueness isstudied and some methods for their recursive computation are given. As an applica-is constructed.展开更多
This article considers weighted approximation of multivariate function in reproducing kernel Hilbert space, and gives a relation between nth minimal errors for standard and linear information in the randomized setting...This article considers weighted approximation of multivariate function in reproducing kernel Hilbert space, and gives a relation between nth minimal errors for standard and linear information in the randomized setting. Using this relation we can estimate the nth minimal error for standard information by the nth minimal error for linear information, and study the tractability and strong tractability for these two classes of information.展开更多
In the osmotic dehydration process of food,on-line estimation of concentrations of two components in ternary solution with NaCl and sucrose was performed based on multi-functional sensing technique.Moving Least Square...In the osmotic dehydration process of food,on-line estimation of concentrations of two components in ternary solution with NaCl and sucrose was performed based on multi-functional sensing technique.Moving Least Squares were adopted in approximation procedure to estimate the viscosity of such interested ternary solution with the given data set.As a result,in one mode of using total experimental data as calibration data and validation data,the relative deviations of estimated viscosities are less than ±1.24%.In the other mode,by taking total experimental data except the ones for estimation as calibration data,the relative deviations are less than ±3.47%.In the same way,the density of ternary solution can be also estimated with deviations less than ± 0.11% and ± 0.30% respectively in these two models.The satisfactory and accurate results show the extraordinary efficiency of Moving Least Squares behaved in signal approximation for multi-functional sensors.展开更多
Let be Holder space and G = L2([0, 1]d) with the inner product given byThis paper considers the embedding operator S : H →G,S(f) = f, f ∈ H . We prove thatwhere en(S,Astd ) and en(S, Aall ) denote the nth minimal er...Let be Holder space and G = L2([0, 1]d) with the inner product given byThis paper considers the embedding operator S : H →G,S(f) = f, f ∈ H . We prove thatwhere en(S,Astd ) and en(S, Aall ) denote the nth minimal error of standard and linear information respectively in the worst case, average case and randomized settings, and C is a constant.展开更多
The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciab...The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.展开更多
基金This work is supported by NNSF(10271022)of China.
文摘In this paper the new notion of multivariate least-squares orthogonal poly-nomials from the rectangular form is introduced. Their existence and uniqueness isstudied and some methods for their recursive computation are given. As an applica-is constructed.
基金This work is supported by the National Natural Science Foundation of China (Grant No.: 10271001)
文摘This article considers weighted approximation of multivariate function in reproducing kernel Hilbert space, and gives a relation between nth minimal errors for standard and linear information in the randomized setting. Using this relation we can estimate the nth minimal error for standard information by the nth minimal error for linear information, and study the tractability and strong tractability for these two classes of information.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60672008)the Space Technology Innovation Foundation of China
文摘In the osmotic dehydration process of food,on-line estimation of concentrations of two components in ternary solution with NaCl and sucrose was performed based on multi-functional sensing technique.Moving Least Squares were adopted in approximation procedure to estimate the viscosity of such interested ternary solution with the given data set.As a result,in one mode of using total experimental data as calibration data and validation data,the relative deviations of estimated viscosities are less than ±1.24%.In the other mode,by taking total experimental data except the ones for estimation as calibration data,the relative deviations are less than ±3.47%.In the same way,the density of ternary solution can be also estimated with deviations less than ± 0.11% and ± 0.30% respectively in these two models.The satisfactory and accurate results show the extraordinary efficiency of Moving Least Squares behaved in signal approximation for multi-functional sensors.
基金This research is supported by the National Natural Science Foundation of China(Grant No. 10271001).
文摘Let be Holder space and G = L2([0, 1]d) with the inner product given byThis paper considers the embedding operator S : H →G,S(f) = f, f ∈ H . We prove thatwhere en(S,Astd ) and en(S, Aall ) denote the nth minimal error of standard and linear information respectively in the worst case, average case and randomized settings, and C is a constant.
文摘The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.