A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr...A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.展开更多
A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast a...A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast and extruded AZ31 rods with different textures and combined with the proposed model to reveal the deformation mechanisms.It is shown that,different flow curves of two specimens under tension and compression tests can be simulated by this model.The flow curves of AZ31 extrusions exhibit different shapes for tension and compression due to different activities of tensile twinning and pyramidalc+a slip.The metallographic and TEM observations showed the equal twinning activities at the initial stage in tension and compression tests and the occurrence of pyramidalc+a slip in compression of as-cast Mg-3A1-1Zn alloy with increasing the strain,which is consistent with the simulated results by the proposed model.展开更多
The mechanism of the shear band formation in the high cold rolled BCC metal is analyzed. Based on the plastic deformation theory, the shear distribution in the deformed grain is calculated by using the Taylor constrai...The mechanism of the shear band formation in the high cold rolled BCC metal is analyzed. Based on the plastic deformation theory, the shear distribution in the deformed grain is calculated by using the Taylor constraint model and the Bishop & Hill maximum work principle. Results show that when the rolling direction (RD) is parallel to a certain direction of a grain, the large localized shear occurs on one slip plane, thus generating microbands in the grain because of the high localized shear strain. The angle between the RD and the shear band is about 30°. The plate-like structure of the microband is formed because of the dislocation double cross slip. The transmission electron microscope (TEM) observation of the microband in the cold rolled BCC metal confirms the formation mechanism of the microband.展开更多
In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was ...In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.展开更多
The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to charact...The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.展开更多
True stress-true strain curve,microstructure and texture information were obtained to investigate the superplastic deformation behavior of 1420 Al-Li alloy sheets with initial elongated grains.From the true stress-tru...True stress-true strain curve,microstructure and texture information were obtained to investigate the superplastic deformation behavior of 1420 Al-Li alloy sheets with initial elongated grains.From the true stress-true curve,the stress increases with the increase of strain to 0.15,then dramatically decreases with the increase of strain to 0.80,and finally keeps almost a horizontal line.Meanwhile,initial elongated grains are gradually changed into equiaxed grains and the initial strong Brass {0 1 1} <2 1 1> and S {1 2 3} <6 3 4> orientations are turned into nearly random orientation with increasing strain.All these results suggest that dislocation activity is the dominant mechanism during the first stage,then dynamic recrystallization occurs,and grain rotation is expected as an accommodation for grain boundary sliding(GBS).At larger strains,grain boundary migration(GBM) becomes necessary to accommodate GBS.展开更多
It is imperative to evaluate factor of safety against basal heave failure in the design of braced deep excavation in soft clay.Based on previously published field monitoring data and finite element analyses of ground ...It is imperative to evaluate factor of safety against basal heave failure in the design of braced deep excavation in soft clay.Based on previously published field monitoring data and finite element analyses of ground settlements of deep excavation in soft clay,an assumed plastic deformation mechanism proposed here gives upper bound solutions for base stability of braced deep excavations.The proposed kinematic mechanism is optimized by the mobile depth(profile wavelength).The method takes into account the influence of strength anisotropy under plane strain conditions,the embedment of the retaining wall,and the locations of the struts.The current method is validated by comparison with published numerical study of braced excavations in Boston blue clay and two other cases of excavation failure in Taipei.The results show that the upper bound solutions obtained from this presented method is more accurate as compared with the conventional methods for basal heave failure analyses.展开更多
The dynamic conditions for plastic deformation mechanism,surface source mechanism,interface source mechanism and creep mechanism in the diffusion bonding process are proposed.Based on these dynamic conditions,a model ...The dynamic conditions for plastic deformation mechanism,surface source mechanism,interface source mechanism and creep mechanism in the diffusion bonding process are proposed.Based on these dynamic conditions,a model for void closure in the diffusion bonding process is derived.The effects of diffusion bonding parameters on the bonding mechanisms are analyzed.For the diffusion bonding process of TC4 alloy,at a low diffusion bonding temperature or pressure,or for a short time,the interface source mechanism plays a main role.But,the creep mechanism is the dominant mechanism and operates until the diffusion bonding is fulfilled.As the diffusion bonding time increases,the surface source and interface source mechanism enhance and then stop at a certain stage of diffusion bonding,while the creep mechanism enhances continuously.As the diffusion bonding temperature or pressure increases,the interface source mechanism weakens and the other mechanisms enhance.The maximum and average errors between the calculated and the experimental results in the diffusion bonding for TC4 alloy are 12.86% and 5.79%,respectively.展开更多
Hornblende's plastic and superplastic deformation mechanisms were studied on the basis of some new information obtained from amphibolite samples in the Hengshan Mountains (Hengshan, Shanxi, China).For this purpose,...Hornblende's plastic and superplastic deformation mechanisms were studied on the basis of some new information obtained from amphibolite samples in the Hengshan Mountains (Hengshan, Shanxi, China).For this purpose, the samples were measured and analyzed by optical microscope (OM), electron probe microanalysis (EPMA), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) respectively.Because localized strong strain is more than 1000%, it is presumed that structural superplastic deformation was developed during the ductile shearing process.It is calculated that deformation occurred at 650-679℃ and 0.770-0.914 GPa, based on the study of plagioclase-hornblende geothermometry and geobarometry.TEM images show that new hornblende grains developed few dislocations and hornblende crystals exhibit straight grain boundaries.EBSD of strongly deformed hornblendes reveals a fabric dominated by a {100} lattice preferred orientation (LPO), indicative of new grain recrystallization along the lineation direction (X axis).Thus superplastic deformation of hornblendes from the Hengshan Mountains was developed by mainly solid-state diffusive mass transfer and grain boundary sliding.展开更多
This review highlights very recent achievements and new developments of severe plastic deformation(SPD) technology for producing bulk ultrafine-grain(UFG) and even nanocrystalline(nc) materials.These numerous modified...This review highlights very recent achievements and new developments of severe plastic deformation(SPD) technology for producing bulk ultrafine-grain(UFG) and even nanocrystalline(nc) materials.These numerous modified and novel SPD methods include cyclic forward-backward extrusion,axi-symmetric forward spiral extrusion,vortex extrusion,simple shear extrusion,planar twist extrusion,tubular channel angular pressing,cone-cone method,high-pressure tube twisting,tube channel pressing and elliptical cross-section spiral equal-channel extrusion.According to classification,these new methods are categorized into the extension of equal-channel angle pressing(ECAP),high-pressure torsion(HPT),twist extrusion(TE) and constrained groove pressing(CGP),respectively.The principles of various new SPD technologies are described in detail.In addition,the microstructure revolution characteristics and mechanical properties of materials produced by SPD process,as well as the applications of SPD techniques to UFG materials,are also reported.Furthermore,this article reviews recent progresses in determining the refinement and/or deformation mechanisms,e.g.dislocation deformation mechanism,twin deformation mechanism and grain boundary sliding and torsional deformation mechanism,and further orientation of SPD technology.展开更多
Detwinning is an important plastic deformation mechanism that can significantly affect the mechanical properties of twin-structured metals.Although many detwinning mechanisms have been proposed for pure metals,it is u...Detwinning is an important plastic deformation mechanism that can significantly affect the mechanical properties of twin-structured metals.Although many detwinning mechanisms have been proposed for pure metals,it is unclear whether such a deformation model is valid for nanocrystalline alloys because of the lack of direct evidence.Here,the atomicscale detwinning deformation process of a nanocrystalline AuAg alloy with an average grain size of~15 nm was investigated in situ.The results show that there are three types of detwinning mechanisms in nanocrystalline AuAg alloys.The first type of detwinning results from grain boundary migration.The second type of detwinning occurs through combined layer-by-layer thinning and incoherent twin boundary migration.The last one occurs through incoherent twin boundary migration,which results from the collective motion of partial dislocations in an array.展开更多
基金the National Natural Science Foundation of China(Nos.U21A2051,52173297,52071133)the R&D Projects of Henan Academy of Sciences of China(No.220910009)+2 种基金the Key R&D and Promotion Projects of Henan Province of China(No.212102210441)the Joint Fund of Henan Science and Technology R&D Plan of China(No.222103810037)the Zhongyuan Scholar Workstation Funded Project of China(No.214400510028).
文摘A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.
基金Project(51201092)supported by the National Natural Science Foundation of China
文摘A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast and extruded AZ31 rods with different textures and combined with the proposed model to reveal the deformation mechanisms.It is shown that,different flow curves of two specimens under tension and compression tests can be simulated by this model.The flow curves of AZ31 extrusions exhibit different shapes for tension and compression due to different activities of tensile twinning and pyramidalc+a slip.The metallographic and TEM observations showed the equal twinning activities at the initial stage in tension and compression tests and the occurrence of pyramidalc+a slip in compression of as-cast Mg-3A1-1Zn alloy with increasing the strain,which is consistent with the simulated results by the proposed model.
文摘The mechanism of the shear band formation in the high cold rolled BCC metal is analyzed. Based on the plastic deformation theory, the shear distribution in the deformed grain is calculated by using the Taylor constraint model and the Bishop & Hill maximum work principle. Results show that when the rolling direction (RD) is parallel to a certain direction of a grain, the large localized shear occurs on one slip plane, thus generating microbands in the grain because of the high localized shear strain. The angle between the RD and the shear band is about 30°. The plate-like structure of the microband is formed because of the dislocation double cross slip. The transmission electron microscope (TEM) observation of the microband in the cold rolled BCC metal confirms the formation mechanism of the microband.
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.
基金Project(10776023)supported by the National Natural Science Foundation of China
文摘The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.
基金Project(2006DFA53250) supported by the International Science and Technology Cooperation Program of ChinaProject(2005CB623706) supported by the National Basic Research Program of China
文摘True stress-true strain curve,microstructure and texture information were obtained to investigate the superplastic deformation behavior of 1420 Al-Li alloy sheets with initial elongated grains.From the true stress-true curve,the stress increases with the increase of strain to 0.15,then dramatically decreases with the increase of strain to 0.80,and finally keeps almost a horizontal line.Meanwhile,initial elongated grains are gradually changed into equiaxed grains and the initial strong Brass {0 1 1} <2 1 1> and S {1 2 3} <6 3 4> orientations are turned into nearly random orientation with increasing strain.All these results suggest that dislocation activity is the dominant mechanism during the first stage,then dynamic recrystallization occurs,and grain rotation is expected as an accommodation for grain boundary sliding(GBS).At larger strains,grain boundary migration(GBM) becomes necessary to accommodate GBS.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51325901)the State Key Program of National Natural Science of China(Grant No.51338009)
文摘It is imperative to evaluate factor of safety against basal heave failure in the design of braced deep excavation in soft clay.Based on previously published field monitoring data and finite element analyses of ground settlements of deep excavation in soft clay,an assumed plastic deformation mechanism proposed here gives upper bound solutions for base stability of braced deep excavations.The proposed kinematic mechanism is optimized by the mobile depth(profile wavelength).The method takes into account the influence of strength anisotropy under plane strain conditions,the embedment of the retaining wall,and the locations of the struts.The current method is validated by comparison with published numerical study of braced excavations in Boston blue clay and two other cases of excavation failure in Taipei.The results show that the upper bound solutions obtained from this presented method is more accurate as compared with the conventional methods for basal heave failure analyses.
基金supported by the National Natural Science Foundation of China (Grant No. 50975234)
文摘The dynamic conditions for plastic deformation mechanism,surface source mechanism,interface source mechanism and creep mechanism in the diffusion bonding process are proposed.Based on these dynamic conditions,a model for void closure in the diffusion bonding process is derived.The effects of diffusion bonding parameters on the bonding mechanisms are analyzed.For the diffusion bonding process of TC4 alloy,at a low diffusion bonding temperature or pressure,or for a short time,the interface source mechanism plays a main role.But,the creep mechanism is the dominant mechanism and operates until the diffusion bonding is fulfilled.As the diffusion bonding time increases,the surface source and interface source mechanism enhance and then stop at a certain stage of diffusion bonding,while the creep mechanism enhances continuously.As the diffusion bonding temperature or pressure increases,the interface source mechanism weakens and the other mechanisms enhance.The maximum and average errors between the calculated and the experimental results in the diffusion bonding for TC4 alloy are 12.86% and 5.79%,respectively.
基金supported by National Natural Science Foundation of China(Grant No.40772133)
文摘Hornblende's plastic and superplastic deformation mechanisms were studied on the basis of some new information obtained from amphibolite samples in the Hengshan Mountains (Hengshan, Shanxi, China).For this purpose, the samples were measured and analyzed by optical microscope (OM), electron probe microanalysis (EPMA), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) respectively.Because localized strong strain is more than 1000%, it is presumed that structural superplastic deformation was developed during the ductile shearing process.It is calculated that deformation occurred at 650-679℃ and 0.770-0.914 GPa, based on the study of plagioclase-hornblende geothermometry and geobarometry.TEM images show that new hornblende grains developed few dislocations and hornblende crystals exhibit straight grain boundaries.EBSD of strongly deformed hornblendes reveals a fabric dominated by a {100} lattice preferred orientation (LPO), indicative of new grain recrystallization along the lineation direction (X axis).Thus superplastic deformation of hornblendes from the Hengshan Mountains was developed by mainly solid-state diffusive mass transfer and grain boundary sliding.
基金supported by the Aeronautical Science Foundation of China(Grant No. 2011ZE53059)the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. Z2011006)
文摘This review highlights very recent achievements and new developments of severe plastic deformation(SPD) technology for producing bulk ultrafine-grain(UFG) and even nanocrystalline(nc) materials.These numerous modified and novel SPD methods include cyclic forward-backward extrusion,axi-symmetric forward spiral extrusion,vortex extrusion,simple shear extrusion,planar twist extrusion,tubular channel angular pressing,cone-cone method,high-pressure tube twisting,tube channel pressing and elliptical cross-section spiral equal-channel extrusion.According to classification,these new methods are categorized into the extension of equal-channel angle pressing(ECAP),high-pressure torsion(HPT),twist extrusion(TE) and constrained groove pressing(CGP),respectively.The principles of various new SPD technologies are described in detail.In addition,the microstructure revolution characteristics and mechanical properties of materials produced by SPD process,as well as the applications of SPD techniques to UFG materials,are also reported.Furthermore,this article reviews recent progresses in determining the refinement and/or deformation mechanisms,e.g.dislocation deformation mechanism,twin deformation mechanism and grain boundary sliding and torsional deformation mechanism,and further orientation of SPD technology.
基金supported by Beijing Natural Science Foundation(Z180014)Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018)the National Natural Science Foundation of China(51771104)。
文摘Detwinning is an important plastic deformation mechanism that can significantly affect the mechanical properties of twin-structured metals.Although many detwinning mechanisms have been proposed for pure metals,it is unclear whether such a deformation model is valid for nanocrystalline alloys because of the lack of direct evidence.Here,the atomicscale detwinning deformation process of a nanocrystalline AuAg alloy with an average grain size of~15 nm was investigated in situ.The results show that there are three types of detwinning mechanisms in nanocrystalline AuAg alloys.The first type of detwinning results from grain boundary migration.The second type of detwinning occurs through combined layer-by-layer thinning and incoherent twin boundary migration.The last one occurs through incoherent twin boundary migration,which results from the collective motion of partial dislocations in an array.