针对基于关系边界框提取的谓词特征粒度相对较粗的问题,提出区域敏感的场景图生成(region-sensitive scene graph generation,RS-SGG)方法。谓词特征提取模块将关系边界框分为4个区域,基于自注意力机制抑制关系边界框中与关系分类无关...针对基于关系边界框提取的谓词特征粒度相对较粗的问题,提出区域敏感的场景图生成(region-sensitive scene graph generation,RS-SGG)方法。谓词特征提取模块将关系边界框分为4个区域,基于自注意力机制抑制关系边界框中与关系分类无关的背景区域。关系特征解码器在进行关系预测时不仅考虑了物体对的视觉特征和语义特征,也考虑了物体对的位置特征。在视觉基因组(visual genome,VG)数据集上分别计算了RS-SGG方法针对场景图生成、场景图分类和谓词分类3个子任务的图约束召回率和无图约束召回率,并与主流的场景图生成方法进行了比较。实验结果表明,RS-SGG的图约束召回率和无图约束召回率均优于主流方法。此外,可视化实验结果也进一步证明了所提出方法的有效性。展开更多
场景图生成方法(SGG)主要研究图像中的实体及其关系,广泛应用于视觉理解与图像检索等领域。现有的场景图生成方法受限于视觉特征或单一视觉概念,导致关系识别准确率较低,且需要大量的人工标注。为解决上述问题,文中融合图像和文本特征,...场景图生成方法(SGG)主要研究图像中的实体及其关系,广泛应用于视觉理解与图像检索等领域。现有的场景图生成方法受限于视觉特征或单一视觉概念,导致关系识别准确率较低,且需要大量的人工标注。为解决上述问题,文中融合图像和文本特征,提出了一种基于多模态对比学习的场景图生成方法MCL-SG(Multimodal Contrastive Learning for Scene Graph)。首先,对图像和文本输入进行特征提取,得到图像和文本特征;然后,使用Transformer Encoder编码器对特征向量进行编码和融合;最后,采用对比学习的自监督策略,计算图像和文本特征的相似度,通过最小化正样本和负样本之间的相似度差异完成训练,无需人工标注。通过大型场景图生成公开数据集VG(Visual Genome)的3个不同层次子任务(即SGDet,SGCls和PredCls)的实验表明:在mean Recall@100指标中,MCL-SG的场景图检测准确率提升9.8%,场景图分类准确率提升14.0%,关系分类准确率提升8.9%,从而证明了MCL-SG的有效性。展开更多
场景图为描述图像内容的结构图(Graph),其在生成过程中存在两个问题:1)二步式场景图生成方法造成有益信息流失,使得任务难度提高;2)视觉关系长尾分布使得模型发生过拟合、关系推理错误率上升。针对这两个问题,文中提出结合多尺度特征图...场景图为描述图像内容的结构图(Graph),其在生成过程中存在两个问题:1)二步式场景图生成方法造成有益信息流失,使得任务难度提高;2)视觉关系长尾分布使得模型发生过拟合、关系推理错误率上升。针对这两个问题,文中提出结合多尺度特征图和环型关系推理的场景图生成模型SGiF(Scene Graph in Features)。首先,计算多尺度特征图上的每一特征点存在视觉关系的可能性,并将存在可能性高的特征点特征提取出来;然后,从被提取出的特征中解码得到主宾组合,根据解码结果的类别差异,对结果进行去重,以此得到场景图结构;最后,根据场景图结构检测包含目标关系边在内的环路,将环路上的其他边作为计算调整因子的输入,以该因子调整原关系推理结果,并最终完成场景图的生成。实验设置SGGen和PredCls作为验证项,在大型场景图生成数据集VG(Visual Genome)子集上的实验结果表明,通过使用多尺度特征图,相比二步式基线,SGiF的视觉关系检测命中率提升了7.1%,且通过使用环型关系推理,相比非环型关系推理基线,SGiF的关系推理命中率提升了2.18%,从而证明了SGiF的有效性。展开更多
文摘针对基于关系边界框提取的谓词特征粒度相对较粗的问题,提出区域敏感的场景图生成(region-sensitive scene graph generation,RS-SGG)方法。谓词特征提取模块将关系边界框分为4个区域,基于自注意力机制抑制关系边界框中与关系分类无关的背景区域。关系特征解码器在进行关系预测时不仅考虑了物体对的视觉特征和语义特征,也考虑了物体对的位置特征。在视觉基因组(visual genome,VG)数据集上分别计算了RS-SGG方法针对场景图生成、场景图分类和谓词分类3个子任务的图约束召回率和无图约束召回率,并与主流的场景图生成方法进行了比较。实验结果表明,RS-SGG的图约束召回率和无图约束召回率均优于主流方法。此外,可视化实验结果也进一步证明了所提出方法的有效性。
文摘场景图生成方法(SGG)主要研究图像中的实体及其关系,广泛应用于视觉理解与图像检索等领域。现有的场景图生成方法受限于视觉特征或单一视觉概念,导致关系识别准确率较低,且需要大量的人工标注。为解决上述问题,文中融合图像和文本特征,提出了一种基于多模态对比学习的场景图生成方法MCL-SG(Multimodal Contrastive Learning for Scene Graph)。首先,对图像和文本输入进行特征提取,得到图像和文本特征;然后,使用Transformer Encoder编码器对特征向量进行编码和融合;最后,采用对比学习的自监督策略,计算图像和文本特征的相似度,通过最小化正样本和负样本之间的相似度差异完成训练,无需人工标注。通过大型场景图生成公开数据集VG(Visual Genome)的3个不同层次子任务(即SGDet,SGCls和PredCls)的实验表明:在mean Recall@100指标中,MCL-SG的场景图检测准确率提升9.8%,场景图分类准确率提升14.0%,关系分类准确率提升8.9%,从而证明了MCL-SG的有效性。
文摘场景图为描述图像内容的结构图(Graph),其在生成过程中存在两个问题:1)二步式场景图生成方法造成有益信息流失,使得任务难度提高;2)视觉关系长尾分布使得模型发生过拟合、关系推理错误率上升。针对这两个问题,文中提出结合多尺度特征图和环型关系推理的场景图生成模型SGiF(Scene Graph in Features)。首先,计算多尺度特征图上的每一特征点存在视觉关系的可能性,并将存在可能性高的特征点特征提取出来;然后,从被提取出的特征中解码得到主宾组合,根据解码结果的类别差异,对结果进行去重,以此得到场景图结构;最后,根据场景图结构检测包含目标关系边在内的环路,将环路上的其他边作为计算调整因子的输入,以该因子调整原关系推理结果,并最终完成场景图的生成。实验设置SGGen和PredCls作为验证项,在大型场景图生成数据集VG(Visual Genome)子集上的实验结果表明,通过使用多尺度特征图,相比二步式基线,SGiF的视觉关系检测命中率提升了7.1%,且通过使用环型关系推理,相比非环型关系推理基线,SGiF的关系推理命中率提升了2.18%,从而证明了SGiF的有效性。