期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
喀斯特石漠化地区不同植被群落的土壤有机碳变化 被引量:29
1
作者 罗海波 刘方 +2 位作者 刘元生 何腾兵 苏英格 《林业科学》 EI CAS CSCD 北大核心 2009年第9期24-28,共5页
研究贵州中部喀斯特石漠化地区不同植被群落土壤和小生境土壤中有机碳的数量和质量变化。结果表明:喀斯特石漠化区阔叶林土壤有机总碳含量和腐殖酸碳含量明显高于灌木林、灌草丛和稀疏草丛,而土壤水溶性有机碳含量的变化则相反;喀斯特... 研究贵州中部喀斯特石漠化地区不同植被群落土壤和小生境土壤中有机碳的数量和质量变化。结果表明:喀斯特石漠化区阔叶林土壤有机总碳含量和腐殖酸碳含量明显高于灌木林、灌草丛和稀疏草丛,而土壤水溶性有机碳含量的变化则相反;喀斯特森林退化后,土壤有机碳的累积量减少、流失量增加;喀斯特小生境土壤有机总碳和腐殖酸碳含量存在明显的水平空间变异:石坑>石沟>石缝>石洞。主成分分析结果表明:喀斯特土壤有机碳变化的第1主要因子由植被类型决定,第2主要因子由小生境类型所决定。 展开更多
关键词 森林土壤 小生境 土壤有机总碳 腐殖酸 土壤水溶性有机 喀斯特
在线阅读 下载PDF
Changes in Soil C and N Contents and Mineralization Across a Cultivation Chronosequence of Paddy Fields in Subtropical China 被引量:17
2
作者 LI Zhong-Pei ZHANG Tao-Lin +1 位作者 HAN Feng-Xiang P. FELIX-HENNINGSEN 《Pedosphere》 SCIE CAS CSCD 2005年第5期554-562,共9页
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 day... Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratoryincubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cmsoil contained 19.6 g kg-1 organic C and 1.62 g kg-1 total N, with the corresponding values of 18.1 g kg-1 and 1.50g kg-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation themineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%,respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organicC and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and thenincreased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass Nincreased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm)contained 332.8 mg kg-1 of microbial biomass C and 23.85 mg kg-1 of microbial biomass N, which were 111% and 47%higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation insubtropical China would have attained a steady state of organic C content, being about 19 g kg-1. 展开更多
关键词 cultivation chronosequence MINERALIZATION paddy fields soil C soil N
在线阅读 下载PDF
Spatial-Temporal Changes of Soil Organic Carbon During Vegetation Recovery at Ziwuling, China 被引量:30
3
作者 LI Yu-Yuan SHAO Ming-An +1 位作者 ZHENG Ji-Yong ZHANG Xing-Chang 《Pedosphere》 SCIE CAS CSCD 2005年第5期601-610,共10页
To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in ... To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment. 展开更多
关键词 soil organic carbon density spatial-temporal change vegetation recovery vegetation succession
在线阅读 下载PDF
Soil Organic Carbon Content and Distribution in a Small Landscape of Dongguan, South China 被引量:22
4
作者 SU Zhi-Yao XIONG Yong-Mei +2 位作者 ZHU Jian-Yun YE Yong-Chang YE Mai 《Pedosphere》 SCIE CAS CSCD 2006年第1期10-17,共8页
Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic c... Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic carbon density were estimated based on a soil survey of a small landscape in Dongguan, South China, with spatial heterogeneity of SOC distribution and the impacts of land-use patterns on soil organic carbon content assessed. Field sampling was carried out based on a 150 m×150 m grid system overlaid on the topographic map of the study area and samples were collected in three 20-cm layers to a depth of 60 cm. Spatial variability in the distribution of SOC was assessed using the Kruskal-Wallis test. Results showed that SOC in the topsoil layer (0-20 cm) was not much higher or even lower in some sites than the underlying layers, and except for the two sites covered with natural woodland, it did not exhibit a pronounced vertical gradient. The difference in both horizontal and vertical distribution of SOC was not statistically significant. However, in the topsoil layer among land-use/land-cover patterns, significant differences (P≤0.05) in SOC distribution existed, indicating that management practices had great impact on SOC content. SOC storage in the study area to a depth of 20, 40, and 60 cm was estimated as 2.13×106 kg, 3.46×106 kg, and 4.61×106 kg, respectively. 展开更多
关键词 land-use pattern organic carbon content organic carbon density spatial wariability
在线阅读 下载PDF
Soil Organic Carbon and Labile Carbon Along a Precipitation Gradient and Their Responses to Some Environmental Changes 被引量:12
5
作者 WANG Shu-Ping ZHOU Guang-Sheng +1 位作者 GAO Su-Hua GUO Jian-Ping 《Pedosphere》 SCIE CAS CSCD 2005年第5期676-680,共5页
Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mo... Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distributionof soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses toCO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along thegradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased morerapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease inlongitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that forthe organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P < 0.001) than that of soil labile carbon(0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, thecoefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2concentration (700 μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. Theseindicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon. 展开更多
关键词 environmental changes labile carbon organic carbon precipitation gradient SOIL
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部