This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste...This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss.展开更多
The three-dimensional discontinuous deformation analysis(3D-DDA) is a promising numerical method for both static and dynamic analyses of rock systems. Lacking mature software, its popularity is far behind its ability....The three-dimensional discontinuous deformation analysis(3D-DDA) is a promising numerical method for both static and dynamic analyses of rock systems. Lacking mature software, its popularity is far behind its ability. To address this problem, this paper presents a new software architecture from a software engineering viewpoint. Based on 3D-DDA characteristics, the implementation of the proposed architecture has the following merits. Firstly, the software architecture separates data, computing, visualization, and signal control into individual modules. Secondly, data storage and parallel access are fully considered for different conditions. Thirdly, an open computing framework is provided which supports most numerical computing methods; common tools for equation solving and parallel computing are provided for further development. Fourthly, efficient visualization functions are provided by integrating a variety of visualization algorithms. A user-friendly graphical user interface is designed to improve the user experience. Finally, through a set of examples, the software is verified against both analytical solutions and the original code by Dr. Shi Gen Hua.展开更多
基金Project supported by Borujerd Branch,Islamic Azad University,Iran
文摘This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss.
基金supported by the National Natural Science Foundation of China(Grant No.61471338)the Knowledge Innovation Program of the Chinese Academy of Sciences,Youth Innovation Promotion Association CAS,President Fund of UCASCRSRI Open Research Program(Grant No.CKWV2015217/KY)
文摘The three-dimensional discontinuous deformation analysis(3D-DDA) is a promising numerical method for both static and dynamic analyses of rock systems. Lacking mature software, its popularity is far behind its ability. To address this problem, this paper presents a new software architecture from a software engineering viewpoint. Based on 3D-DDA characteristics, the implementation of the proposed architecture has the following merits. Firstly, the software architecture separates data, computing, visualization, and signal control into individual modules. Secondly, data storage and parallel access are fully considered for different conditions. Thirdly, an open computing framework is provided which supports most numerical computing methods; common tools for equation solving and parallel computing are provided for further development. Fourthly, efficient visualization functions are provided by integrating a variety of visualization algorithms. A user-friendly graphical user interface is designed to improve the user experience. Finally, through a set of examples, the software is verified against both analytical solutions and the original code by Dr. Shi Gen Hua.