期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
不同植被类型下土壤胡敏酸降解特性
1
作者 付东磊 刘梦云 +4 位作者 刘林 常庆瑞 左进香 罗勤 赵彤 《环境科学研究》 EI CAS CSSCI CSCD 北大核心 2014年第5期513-519,共7页
为了解不同植被类型下土壤HA(胡敏酸)降解菌的种类、分布状况及其中C的降解程度,选取退耕还林典型地带,于农田、油松、刺槐、沙棘、混交林0~10cm土样中分别提取HA,利用HA作为唯一C、N源筛选HA降解微生物.结果表明:相比农田土壤H... 为了解不同植被类型下土壤HA(胡敏酸)降解菌的种类、分布状况及其中C的降解程度,选取退耕还林典型地带,于农田、油松、刺槐、沙棘、混交林0~10cm土样中分别提取HA,利用HA作为唯一C、N源筛选HA降解微生物.结果表明:相比农田土壤HA,各林地土壤HA中甜(c)增加,”(N)有所减少;共分离获得5株HA降解菌,根据16srRNA序列鉴定,分别为Bacillus licheniformis、Rhizobiumn epotum、Microbacterium resistens、Stenotrophomonas maltophilia、Streptomyces azureus,相似度分别为99.65%、99.78%、98.71%、99.23%、99.78%.农田、刺槐、油松及混交林的降解菌优势种为Bacillus licheniformis,沙棘优势种为Streptomyces azureus,刺槐无Rhizobium nepotum分布,沙棘和混交林无Stenotrophomonas maltophilia分布;降解菌数量为沙棘〉刺槐〉农田〉油松〉混交林,混交林仅为沙棘的58.87%;混交林、油松、沙棘、刺槐降解菌的RC(呼吸量碳)分别较农田高出25.35%、11.28%、10.36%、7.11%,混交林与农田差异显著(P〈0.05).沙棘、刺槐、农田、油松降解菌MBC(微生物生物量碳)分别较混交林高出131.91%、68.48%、64.98%、54.47%,刺槐、农田、油松三者与沙棘及混交林差异显著(P〈0.05).沙棘土壤HA的TDR(总降解率)明显高于农田和混交林(P〈0.05).相关性分析表明,降解菌数量与MBC呈极显著正相关,与RC呈极显著负相关(P〈0.01).结果表明,植被类型影响了土壤HA降解菌的群落组成及其降解特性. 展开更多
关键词 植被类型 胡敏酸降解菌 呼吸量碳 微生物生物 总降解
在线阅读 下载PDF
Effects of Different Fertilization Treatments on Biological Activity of Reclaimed Soil
2
作者 张平 洪坚平 +1 位作者 乔志伟 李娜 《Agricultural Science & Technology》 CAS 2016年第3期619-623,共5页
As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization sc... As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced. 展开更多
关键词 Different fertilization treatments Soil rehabilitation Enzyme activity Soil respiration Microbial biomass carbon and nitrogen
在线阅读 下载PDF
Microbial Development in Soils Under Intensively Managed Bamboo (Phyllostachys praecox) Stands 被引量:3
3
作者 XUQiu-Fang JIANGPei-Kun 《Pedosphere》 SCIE CAS CSCD 2005年第1期33-40,共8页
Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to unders... Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties. 展开更多
关键词 microbial biomass carbon microbial functional diversity microbial respiration carbon Phyllostachys praecox SOIL
在线阅读 下载PDF
Influence of Artificial Light on Laying Hens Production of Heat, Moisture and Carbon Dioxide in a Floor Housing System
4
作者 Gosta Gustafsson Eva Von Wachenfelt 《Journal of Agricultural Science and Technology(A)》 2012年第9期1086-1093,共8页
Investigations about laying hens reactions on artificial light conditions were carried out in a climate chamber equipped with a floor housing system for laying hens. The release of moisture increased during light peri... Investigations about laying hens reactions on artificial light conditions were carried out in a climate chamber equipped with a floor housing system for laying hens. The release of moisture increased during light periods probably due to increased activity which increased respiration rate but also on increased scratching which increased evaporation of moisture from bedding material. The daily average was 6.29 g henl h"l at 4 lux and 5.97 g henl hl, at 93 lux which corresponds to a difference of 5%. The level of light intensity seemed to have little influence on the release of moisture. The total release of heat was slightly higher during light periods compared to dark periods. Explanations can be increased activity but also feed intake increasing the metabolic rate during light periods. The daily average of total heat production was 17.0 W per hen at 4 lux and 14.7 at 93 lux which corresponds to a difference of 16%. The release of carbon dioxide increased during light periods probably due to increased activity and respiration. 展开更多
关键词 Laying hens artificial light HEAT MOISTURE carbon dioxide.
在线阅读 下载PDF
Relationship Between Vegetation Restoration and Soil Microbial Characteristics in Degraded Karst Regions: A Case Study 被引量:34
5
作者 WEI Yuan YU Li-Fei +2 位作者 ZHANG Jin-Chi YU Yuan-Chun D. L. DEANGELIS 《Pedosphere》 SCIE CAS CSCD 2011年第1期132-138,共7页
The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic... The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions. 展开更多
关键词 basal respiratory community level physiological profile functional diversity metabolic quotient microbial biomass C
原文传递
Effect of vegetation type, wetting intensity, and nitrogen supply on external carbon stimulated heterotrophic respiration and microbial biomass carbon in forest soils 被引量:6
6
作者 WU HaoHao XU XingKai +2 位作者 DUAN CunTao LI TuanSheng CHENG WeiGuo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第8期1446-1456,共11页
By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature br... By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest (BKPF) and an adjacent white birch forest (WBF) soil under different wetting intensities (55% and 80% WFPS, water-filled pore space) and nitrogen (N) supply (NH4C1 and KNO3, 4.5 g N m-e) conditions. The results showed that for the control, the cumulative carbon dioxide (CO2) flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO2-C m-2, which was significantly larger than that from BKPF soil (2.86 to 3.36 g CO2-C m 2). With increasing wetting intensity, the cumulative CO2 flux from the control was decreased for the WBF soil, whereas an increase in the CO2 flux was observed in the BKPF soil (P 〈 0.05). The addition of NH4C1 or KNO3 alone significantly reduced the cumulative CO2 fluxes by 9.2%-21.6 % from the two soils, especially from WBF soil at low wetting intensity. The addition of glucose alone significantly increased soil heterotrophic respiration, microbial biomass C (MBC), and microbial metabolic quotient. The glucose-induced cumulative CO2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO2-C m-2 and from 7.4 to 23.9 g C m-2, which are larger than the dose of added C. Hence, the addition of external carbon can increase the decomposition of soil native organic C. The glucose-induced average and maximum rates of CO2 fluxes during the incubation were significantly in- fluenced by wetting intensity (WI) and vegetation type (VT), and by WIxVT, NH4ClxVT and WIxVTxNH4C1 (P〈0.05). The addition of NH4C1, instead of KNO3, significantly decreased the glucose-induced MBC of WBF soil (P〈0.05), whereas adding NH4C1 and KNO3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture (P〈0.05). According to the differences in soil labile C pools, MBC and CO2 fluxes in the presence and absence of glucose, it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type, soil moisture, and amount and type of the N added. 展开更多
关键词 dissolved organic carbon forest soil GLUCOSE heterotrophic respiration microbial biomass carbon nitrogen supply stimulating effect
原文传递
Soil Respiration, Microbial Biomass C and N Availability in a Sandy Soil Amended with Clay and Residue Mixtures 被引量:1
7
作者 Sharmistha PAL Petra MARSCHNER 《Pedosphere》 SCIE CAS CSCD 2016年第5期643-651,共9页
Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A l... Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A loamy sandy soil (7% clay) was amended with a clay-rich subsoil (73% clay) at low to high rates to achieve soil mixtures of 12%, 22%, and 30% clay, as compared to a control (sandy soil alone) with no clay addition. The sandy-clay soil mixtures were amended with finely ground plant residues at 10 g kg-l: mature wheat (Triticum aestivum L.) straw with a C/N ratio of 68, mature faba bean (Vicia faba L.) straw with a C/N ratio of 39, or their mixtures with different proportions (0% 100%, weight percentage) of each straw. Soil respiration was measured over days 0-45 and microbial biomass C (MBC), available N, and pH on days 0, 15, 30, and 45. Cumulative respiration was not clearly related to the C/N ratio of the residues or their mixtures, but C use efficiency (cumulative respiration per unit of MBC on day 15) was greater with faba bean than with wheat and the differences among the residue mixtures were smaller at the highest clay addition rate. The MBC concentration was lowest in sole wheat and higher in residue mixtures with 50% of wheat and faba bean in the mixture or more faba bean. Soil N availability and soil pH were lower for the soil mixtures of 22% and 30% clay compared to the sandy soil alone. It could be concluded that soil cumulative respiration and MBC concentration were mainly influenced by residue addition, whereas available N and pH were influenced by clay addition to the sandy soil studied. 展开更多
关键词 available N C use efficiency C/N ratio cumulative respiration nutrient availability pH plant residues
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部