期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of pretreatment,preservation and determination methods for foliar pH of plant samples 被引量:1
1
作者 Sining Liu Jiashu Chen Wenxuan Han 《Journal of Plant Ecology》 SCIE CSCD 2022年第4期673-682,共10页
To compare current methods of pretreatment/determination for plant foliar pH,we proposed a method for longperiod sample preservation with little interference with the stability of foliar pH.Four hundred leaf samples f... To compare current methods of pretreatment/determination for plant foliar pH,we proposed a method for longperiod sample preservation with little interference with the stability of foliar pH.Four hundred leaf samples from 20 species were collected and four methods of pH determination were used:refrigerated(stored at 4°C for 4 days),frozen(stored at−16°C for 4 days),oven-dried and fresh green-leaf pH(control).To explore the effects of different leaf:water mixing ratio on the pH determination results,we measured oven-dried green-leaf pH by leaf:water volume ratio of 1:8 and mass ratio of 1:10,and measured frozen senesced-leaf pH by mass ratio of 1:10 and 1:15.The standard major axis regression was used to analyze the relationship and the conversion equation between the measured pH with different methods.Foliar pH of refrigerated and frozen green leaves did not signifcantly differ from that of fresh green-leaf,but drying always overrated fresh green-leaf pH.During the feld sampling,cryopreservation with a portable refrigerator was an advisable choice to get a precise pH.For long-duration feld sampling,freezing was the optimal choice,and refrigeration is the best choice for the shorttime preservation.The different leaf:water mixing ratio signifcantly infuenced the measured foliar pH.High dilution reduced the proton concentration and increased the measured pH.Our fndings provide the conversion relationships between the existing pretreatment and measurement methods,and establish a connection among pH determined by different methods.Our study can facilitate foliar pH measurement,thus contributing to understanding of this interesting plant functional trait. 展开更多
关键词 green/senesced leaf leaf ph plant functional traits sample preservation specifcation/standard/protocol leaf water ratio transformation/conversion equation
原文传递
Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil 被引量:8
2
作者 Fatima Z.METE Shamim MIA +2 位作者 Feike A.DIJKSTRA Md.ABUYUSUF A.S.M.Iqbal HOSSAIN 《Pedosphere》 SCIE CAS CSCD 2015年第5期713-719,共7页
Biochar effects on legume growth and biological nitrogen fixation have been studied extensively, mostly in acidic soils with laboratory produced biochar. In the present study, a pot experiment in a full factorial expe... Biochar effects on legume growth and biological nitrogen fixation have been studied extensively, mostly in acidic soils with laboratory produced biochar. In the present study, a pot experiment in a full factorial experimental design was performed to examine soybean yield and nodulation of three genotypes grown with or without biochar and NPK fertilizers in an alkaline soil. We observed synergistic effects of biochar and NPK fertilizer applications on biomass and seed yields for all three soybean genotypes. Total biomass production and seed yield increased on average by 67% and 54%, respectively, with biochar and by 201% and 182% with NPK fertilizer application compared to the control. When applications of biochar and NPK fertilizer were combined, the increases were 391% and367%, respectively. However, the biomass production in the control was very low(692 kg ha-1) due to a high soil p H(8.80). The nodulation increased with biochar and NPK fertilizer applications, and was largest with the combined application. A correlation was found between leaf chlorophyll content(single photon avalanche diode value) and nodule number. We suggested that the synergistic increase in yield was due to a decrease in soil p H caused by biochar and NPK fertilizer applications thereby increasing P availability in this alkaline soil. 展开更多
关键词 biological nitrogen fixation biomass production P availability seed yield soil ph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部