期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于CFD变形网格法的螺旋桨水中附加转动惯量研究
1
作者 刘正浩 赵建 +3 位作者 万初瑞 丁举 孙红 王有江 《船舶工程》 CSCD 北大核心 2024年第5期49-55,共7页
为了在螺旋桨设计中较为准确地估算螺旋桨在水中的附加转动惯量,为轴系设计提供更为准确的设计输入,并进一步探究螺旋桨设计参数对于附加转动惯量的影响规律,以通用计算流体力学(CFD)软件STAR-CCM+为平台,运用内置的变形网格技术,以某... 为了在螺旋桨设计中较为准确地估算螺旋桨在水中的附加转动惯量,为轴系设计提供更为准确的设计输入,并进一步探究螺旋桨设计参数对于附加转动惯量的影响规律,以通用计算流体力学(CFD)软件STAR-CCM+为平台,运用内置的变形网格技术,以某油船螺旋桨为研究对象,进行基于RANS方程全粘流的附加转动惯量数值计算研究。在此基础上,通过参数变换获取两组弦长和螺距等比例变化的螺旋桨模型,计算其附加转动惯量并分析和设计参数之间的关系。结果表明:对于同一弦长分布的桨,附加转动惯量占比(水中附加转动惯量除以自身转动惯量)随螺距的增加而增加;对于同样螺距分布的桨,附加转动惯量占比随弦长的增加而减小。通过回归分析,建立螺旋桨水中附加转动惯量与弦长及螺距的回归模型,实现了设计中的快速预报。 展开更多
关键词 螺旋桨 附加转动惯量 变形网格法 计算流体力学
原文传递
Adaptive triangular mesh coarsening with centroidal Voronoi tessellations 被引量:2
2
作者 Zhen-yu SHU Guo-zhao WANG Chen-shi DONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期535-545,共11页
We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a... We present a novel algorithm for adaptive triangular mesh coarsening. The algorithm has two stages. First, the input triangular mesh is refined by iteratively applying the adaptive subdivision operator that performs a so-called red-green split. Second, the refined mesh is simplified by a clustering algorithm based on centroidal Voronoi tessellations (CVTs). The accuracy and good quality of the output triangular mesh are achieved by combining adaptive subdivision and the CVTs technique. Test results showed the mesh coarsening scheme to be robust and effective. Examples are shown that validate the method. 展开更多
关键词 Triangular mesh Mesh coarsening Surface subdivision Centroidal Voronoi tessellations (CVTs)
原文传递
Accurate modelling of the crush behaviour of thin tubular columns using material point method 被引量:4
3
作者 YANG PengFei MEGUID S.A. ZHANG Xiong 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第6期1209-1219,共11页
In this paper,we apply the material point method(MPM),also known as a meshfree method,to examine the crush behaviour of thin tubular columns.Unlike the finite element method,randomly-distributed-weak-particle triggers... In this paper,we apply the material point method(MPM),also known as a meshfree method,to examine the crush behaviour of thin tubular columns.Unlike the finite element method,randomly-distributed-weak-particle triggers were used to account for the deformation behaviour of collapse modes.Both symmetric and asymmetric modes of deformation and their associated mean collapse loads are determined for an elasto-plastic constitutive law describing the tubular columns.Attention was devoted to the accuracy and the convergence of the MPM simulation,which is determined by the number of the particles and the size of the background cells used in our explicit solver.Furthermore,a novel contact approach was adopted to establish the crush behaviour of the tubular columns.Two aspects of the work were accordingly examined,including three different crush velocities(5,10 and 15 m/s) and varied geometrical features of the tube(t/d and l/d) based on the deformation history.The results of our model,which were compared with existing analytical predictions and experimental findings,identify the critical geometric features of the tubular columns that would dictate the deformation mode as being either progressive collapse or following Euler's buckling mode. 展开更多
关键词 thin tubular columns CRUSH material point method deforamtiom mode ELASTO-PLASTIC mean collapse load
原文传递
Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium 被引量:4
4
作者 WANG DongDong LI ZhuoYa +1 位作者 LI Ling WU YouCai 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第3期573-580,共8页
An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where fo... An efficient Galerkin meshfree formulation for three dimensional simulation of large deformation failure evolution in soils is presented. This formulation utilizes the stabilized conforming nodal integration, where for the purpose of stability and efficiency a Lagrangian smoothing strain at nodal point is constructed and thereafter the internal energy is evaluated nodally. This formulation ensures the linear exactness, efficiency and spatial stability in a unified manner and it makes the conventional Galerkin meshfree method affordable for three dimensional simulation. The three dimensional implementation of stabilized conforming nodal integration is discussed in details. To model the failure evolution in soil medium a coupled elasto-plastic damage model is used and an objective stress integration algorithm in combination of elasto-damage predictor and plastic corrector method is employed for stress update. Two typical numerical examples are shown to demonstrate the effectiveness of the present method for modeling large deformation soil failure. 展开更多
关键词 meshfree method three dimensions stabilized conforming nodal integration failure evolution large deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部