随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴...反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴域适应思想,采用对抗学习机制对由变分自编码器(VAE)获得的隐含变量进行表示学习的分布平衡;在此基础上,通过学习样本倾向性权重对样本进行重加权,进一步缩小实验组(Treatment)与对照组(Control)样本间的分布差异。实验结果表明,在工业真实场景数据集的两个场景下,所提模型的提升曲线下的面积(AUUC)比TEDVAE(Treatment Effect with Disentangled VAE)分别提升了15.02%、16.02%;在公开数据集上,所提模型的平均干预效果(ATE)和异构估计精度(PEHE)普遍取得最优结果。展开更多
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
文摘反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴域适应思想,采用对抗学习机制对由变分自编码器(VAE)获得的隐含变量进行表示学习的分布平衡;在此基础上,通过学习样本倾向性权重对样本进行重加权,进一步缩小实验组(Treatment)与对照组(Control)样本间的分布差异。实验结果表明,在工业真实场景数据集的两个场景下,所提模型的提升曲线下的面积(AUUC)比TEDVAE(Treatment Effect with Disentangled VAE)分别提升了15.02%、16.02%;在公开数据集上,所提模型的平均干预效果(ATE)和异构估计精度(PEHE)普遍取得最优结果。