The microstructure evolution in the weld zone of double-side friction stir welded(DS-FSWed) 7085-T7452 Al alloy was investigated by the electron backscatter diffraction method.The results indicate that DS-FSW proces...The microstructure evolution in the weld zone of double-side friction stir welded(DS-FSWed) 7085-T7452 Al alloy was investigated by the electron backscatter diffraction method.The results indicate that DS-FSW process results in substantial grain refinement.The misorientation angle distribution shows a very high volume fraction of high angle grain boundary(HAGB)(above 75%) under DS-FSW condition at rotational rate of 300 r/min.The fraction of HAGB rapidly decreases with increasing the rotational rate from 300 to 950 r/min,and the obvious growth of grain in the weld nugget zone(WNZ) is presented.The average grain sizes in the elongated grains of thermal-mechanical affected zone(TMAZ) and partially equiaxed and coarser grains of thermal affected zone(HAZ) are 7.3 and 15.7 μm with the fractions of HAGBs less than 43% and 30%,respectively.The intensities of(100),(110) and(111) pole figures in the WNZ obviously decrease when compared with those in the BM and present significantly difference along the thickness direction of plate.展开更多
Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In ...Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In this work, double-sided FSW of AA6061 sheet was compared with its conventional single-sided one. An adjustable tool with different pin lengths (50%?95% of the sheet thickness) was used to perform the double-sided welds. Macro- and micro-structures, strength, and hardness of the joints were investigated to determine the optimum pin penetration depth. The best results were obtained for a double-sided joint made by a pin length equal to 65% of the sheet thickness, which showed an increase of 41% in the ultimate tensile strength compared with the single-sided joint.展开更多
In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearin...In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP.展开更多
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(20136102120022)supported by the Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(2013JQ6001)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(3102015ZY023)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microstructure evolution in the weld zone of double-side friction stir welded(DS-FSWed) 7085-T7452 Al alloy was investigated by the electron backscatter diffraction method.The results indicate that DS-FSW process results in substantial grain refinement.The misorientation angle distribution shows a very high volume fraction of high angle grain boundary(HAGB)(above 75%) under DS-FSW condition at rotational rate of 300 r/min.The fraction of HAGB rapidly decreases with increasing the rotational rate from 300 to 950 r/min,and the obvious growth of grain in the weld nugget zone(WNZ) is presented.The average grain sizes in the elongated grains of thermal-mechanical affected zone(TMAZ) and partially equiaxed and coarser grains of thermal affected zone(HAZ) are 7.3 and 15.7 μm with the fractions of HAGBs less than 43% and 30%,respectively.The intensities of(100),(110) and(111) pole figures in the WNZ obviously decrease when compared with those in the BM and present significantly difference along the thickness direction of plate.
基金The support of Iran National Science Foundation (INSF) (Grant No. 91051732)
文摘Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In this work, double-sided FSW of AA6061 sheet was compared with its conventional single-sided one. An adjustable tool with different pin lengths (50%?95% of the sheet thickness) was used to perform the double-sided welds. Macro- and micro-structures, strength, and hardness of the joints were investigated to determine the optimum pin penetration depth. The best results were obtained for a double-sided joint made by a pin length equal to 65% of the sheet thickness, which showed an increase of 41% in the ultimate tensile strength compared with the single-sided joint.
文摘In this study, the authors reviewed and compared the existing researches on debonding performance of FRP-Concrete Interface under direct shear firstly. Following that, two determinants of the debonding ultimate bearing capacity of FRP-Concrete Interface under pure shear are introduced into this study, namely fracture-resisting force at the undamaged area and friction stress transferred along the already debonded surface. The authors deduced the formulae on fracture energy for FRP-Concrete Interface and obtained the values for fracture energy and friction stress at FRP-Concrete Interface based on the experimental results of eight specimens of FRP-Concrete Interface. On the basis of theoretical frame mentioned above, the authors concluded that the friction-resisting stress transferred along the deteriorated bi-material interface is independent of length of FRP bonded onto concrete substrates and concrete strength, but it relies on the tension rigidity (i.e., the layers of the bonding FRP, it is found that the friction stress declines substantially while the layers of FRP increases bonded to concrete substrate). On the contrary, cohesive fracture energy is dependent on length of FRP bonded to concrete substrate and the tension stiffness of bi-material interface. In addition, the percentage of the fracture-resisting force in the ultimate debonding load at the interface decreases with the bonding length of FRP increasing, but increases with the increase of the layers of the FRP.