A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several t...A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.展开更多
A beam stabilization algorithm was proposed for low cost satcom-on-the-move (SOTM) to stabilize the vehicle-mounted antenna beam. The proposed algorithm utilizes the nonlinear observel to estimate the vehicle's att...A beam stabilization algorithm was proposed for low cost satcom-on-the-move (SOTM) to stabilize the vehicle-mounted antenna beam. The proposed algorithm utilizes the nonlinear observel to estimate the vehicle's attitude information based on inertial measurement unit. Then the estimated angles and angular velocities are used to stabilize the antenna beam. Experiment results show tha| the proposed algorithm can stabilize the antenna beam when the tracking information is available, indicating that it is competent to the SOTM system.展开更多
Metamaterials have earned their name with extraordinary properties such as negative refractive index and invisibility cloaking. With over 15 years of research and development, metamaterials show their debut in real wo...Metamaterials have earned their name with extraordinary properties such as negative refractive index and invisibility cloaking. With over 15 years of research and development, metamaterials show their debut in real world applications, especially in the areas of telecommunication, sensing, aerospace & defense, optics and medical instrumentation. In the meanwhile, metamaterials are expanding their concept in areas beyond electromagnetics. In this paper, the authors would like to focus on the research and applications in telecommunication and sensing. Octave-bandwidth horn antennas, flat-panel satellite antennas and air-borne holographic satellite antennas are all fabulous examples of clever implementation that bring metamaterials into practical devices. We would like to discuss the features that differentiate metamaterials from conventional counterparts in case studies. With the advancement in design, manufacturing, packaging, detection and testing, more sophisticated features are expected in the telecommunication, sensing, and beyond.展开更多
文摘A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.
基金This work was supported in part by the National Natural Science Foundation of China under grant numbers 61179004,61179005 and 61401471
文摘A beam stabilization algorithm was proposed for low cost satcom-on-the-move (SOTM) to stabilize the vehicle-mounted antenna beam. The proposed algorithm utilizes the nonlinear observel to estimate the vehicle's attitude information based on inertial measurement unit. Then the estimated angles and angular velocities are used to stabilize the antenna beam. Experiment results show tha| the proposed algorithm can stabilize the antenna beam when the tracking information is available, indicating that it is competent to the SOTM system.
基金supported by Guangdong Innovative Research Team Program(Grant No.2009010005)State Key Laboratory of Meta-RF Electromagnetic Modulation Technology,Shenzhen Innovation P&D Team Program(Peacock Plan)(Grant No.KQE201106020031A)Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.S20120011253)“Metamaterial Design Method and System”
文摘Metamaterials have earned their name with extraordinary properties such as negative refractive index and invisibility cloaking. With over 15 years of research and development, metamaterials show their debut in real world applications, especially in the areas of telecommunication, sensing, aerospace & defense, optics and medical instrumentation. In the meanwhile, metamaterials are expanding their concept in areas beyond electromagnetics. In this paper, the authors would like to focus on the research and applications in telecommunication and sensing. Octave-bandwidth horn antennas, flat-panel satellite antennas and air-borne holographic satellite antennas are all fabulous examples of clever implementation that bring metamaterials into practical devices. We would like to discuss the features that differentiate metamaterials from conventional counterparts in case studies. With the advancement in design, manufacturing, packaging, detection and testing, more sophisticated features are expected in the telecommunication, sensing, and beyond.