研究具有多个非线性源项的半线性波动方程utt-△u=f(u)=∑ak|u|pt-1u from k=1 to l具有临界初值E(0)=d,I(u0)<0的初边值问题。我们证明了,若f(u)满足假设(H),u0(x)∈H01(Ω),u1(x)∈L2(Ω),E(0)=d,I(u0)<0且(u0,u1)≥0,则此问题...研究具有多个非线性源项的半线性波动方程utt-△u=f(u)=∑ak|u|pt-1u from k=1 to l具有临界初值E(0)=d,I(u0)<0的初边值问题。我们证明了,若f(u)满足假设(H),u0(x)∈H01(Ω),u1(x)∈L2(Ω),E(0)=d,I(u0)<0且(u0,u1)≥0,则此问题不存在整体弱解,从而解决了这一公开问题,从实质上补充了文献[10]的结果。展开更多
文摘研究具有多个非线性源项的半线性波动方程utt-△u=f(u)=∑ak|u|pt-1u from k=1 to l具有临界初值E(0)=d,I(u0)<0的初边值问题。我们证明了,若f(u)满足假设(H),u0(x)∈H01(Ω),u1(x)∈L2(Ω),E(0)=d,I(u0)<0且(u0,u1)≥0,则此问题不存在整体弱解,从而解决了这一公开问题,从实质上补充了文献[10]的结果。