The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-...The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value.展开更多
By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of r...By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.展开更多
The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic t...The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.展开更多
基金National Natural Science Foundation of China(No.51705545)。
文摘The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value.
文摘By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elastohydrodynamic lubrication characteristics of a modified gear system under a dynamic load were investigated,including the influence of the modification coefficient and vibrations.Based on the dynamic theory of gear systems,a six-degree-of-freedom tribo-dynamics model was established.Thermal elastohydrodynamic lubrication characteristics of a modified gear system under vibrations and a static load were analyzed.The results showed that the positive transmission gear system exhibited the better lubrication effect compared with other transmission types.A thick lubricating oil film could be formed,and the friction coefficient between the teeth and the oil film flash temperature were the smallest.As the modification coefficient increased,the lubrication condition was continuously improved,and the scuffing load capacity was enhanced.The increment of the modification coefficient increased the meshing stiffness of the gear system but reduced the stiffness of the oil film.