Functional traits play a vital role in mediating the responses of ecosystem services to environmental changes and in predicting the functioning of the ecosystem.However,the connection between functional traits and eco...Functional traits play a vital role in mediating the responses of ecosystem services to environmental changes and in predicting the functioning of the ecosystem.However,the connection between functional traits and ecosystem services has become increasingly intricate due to climate change and human activities for degraded ecosystems.To investigate this relationship,we selected 27 sampling sites in the Yanhe River Basin of the Chinese Loess Plateau,each containing two types of vegetation ecosystems:natural vegetation and artificial vegetation ecosystems.At each sampling site,we measured ecosystem services and calculated the composition index of community traits.We established a response–effect trait framework that included environmental factors such as climate,elevation and human activities.Our results showed that leaf tissue density(LTD)was the overlapping response and effect trait when responding to climate change.LTD is positively correlated with mean annual temperature and negatively correlated with supporting services.Under the influence of human activities,leaf nitrogen content and leaf dry matter content were carriers of environmental change.Comparing the two vegetation ecosystems,the relationship between functional traits and ecosystem services showed divergent patterns,indicating that human activities increased the uncertainty of the relationship between functional traits and ecosystem services.Trait-based ecology holds promise for enhancing predictions of ecosystem services responses to environmental changes.However,the predictive ability is influenced by the complexity of environmental changes.In conclusion,our study highlights the importance of understanding the complex connection between functional traits and ecosystem services in response to climate changes and human activities.展开更多
Objective To analyze heart rate variability (HRV)and its changes with thyroxine treatment in patients with hypothyroidism. Methods HRV was analyzed using 24-hour electrocardiographic recording in 38 patients with hy...Objective To analyze heart rate variability (HRV)and its changes with thyroxine treatment in patients with hypothyroidism. Methods HRV was analyzed using 24-hour electrocardiographic recording in 38 patients with hypothyroidism and 21 normal controls. The changes in HRV were evaluated for the 18 hypothyroid patients after 3 months of thyroxine therapy.Results The time domain measurements of HRV in hypothyroid patients were much lower than those in the control group. As to HRV frequency domain, the high frequency power was significantly higher, but the ratio of low frequency power to frequency power for hypothyroid patients was lower than in the controls. These abnormal changes of HRV measurements in hypothyroid patients were improved after treatment with thyroxine and were associated with recovery of serum concentrations of FT3 and FT4. Conclusions Patients with hypothyroidism often have autonomic neuropathies with a higher level of vagal tone. These abnormalities could be partly improved by thyoxine therapy.展开更多
In this paper, we have improved the fast ignition scheme in order to have more authority needed for highenergy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we empl...In this paper, we have improved the fast ignition scheme in order to have more authority needed for highenergy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma.It is found that the wavelength of 0.53 μm and the intensity of about 1020W/cm^2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances.展开更多
基金supported by the CAS‘light of West China’program(XAB2020YN04)and the Natural Science Foundation of China(41977077 and 41671289).
文摘Functional traits play a vital role in mediating the responses of ecosystem services to environmental changes and in predicting the functioning of the ecosystem.However,the connection between functional traits and ecosystem services has become increasingly intricate due to climate change and human activities for degraded ecosystems.To investigate this relationship,we selected 27 sampling sites in the Yanhe River Basin of the Chinese Loess Plateau,each containing two types of vegetation ecosystems:natural vegetation and artificial vegetation ecosystems.At each sampling site,we measured ecosystem services and calculated the composition index of community traits.We established a response–effect trait framework that included environmental factors such as climate,elevation and human activities.Our results showed that leaf tissue density(LTD)was the overlapping response and effect trait when responding to climate change.LTD is positively correlated with mean annual temperature and negatively correlated with supporting services.Under the influence of human activities,leaf nitrogen content and leaf dry matter content were carriers of environmental change.Comparing the two vegetation ecosystems,the relationship between functional traits and ecosystem services showed divergent patterns,indicating that human activities increased the uncertainty of the relationship between functional traits and ecosystem services.Trait-based ecology holds promise for enhancing predictions of ecosystem services responses to environmental changes.However,the predictive ability is influenced by the complexity of environmental changes.In conclusion,our study highlights the importance of understanding the complex connection between functional traits and ecosystem services in response to climate changes and human activities.
文摘Objective To analyze heart rate variability (HRV)and its changes with thyroxine treatment in patients with hypothyroidism. Methods HRV was analyzed using 24-hour electrocardiographic recording in 38 patients with hypothyroidism and 21 normal controls. The changes in HRV were evaluated for the 18 hypothyroid patients after 3 months of thyroxine therapy.Results The time domain measurements of HRV in hypothyroid patients were much lower than those in the control group. As to HRV frequency domain, the high frequency power was significantly higher, but the ratio of low frequency power to frequency power for hypothyroid patients was lower than in the controls. These abnormal changes of HRV measurements in hypothyroid patients were improved after treatment with thyroxine and were associated with recovery of serum concentrations of FT3 and FT4. Conclusions Patients with hypothyroidism often have autonomic neuropathies with a higher level of vagal tone. These abnormalities could be partly improved by thyoxine therapy.
基金Supported by the Research Council of University of Guilan
文摘In this paper, we have improved the fast ignition scheme in order to have more authority needed for highenergy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma.It is found that the wavelength of 0.53 μm and the intensity of about 1020W/cm^2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances.