A hybrid model of MHD and kinetic theory is proposed to investigate the synergetic stabilizing effects of sheared axial flow and finite Larmor radius on the RayleighTaylor instability in Zpinch implosions.In our m...A hybrid model of MHD and kinetic theory is proposed to investigate the synergetic stabilizing effects of sheared axial flow and finite Larmor radius on the RayleighTaylor instability in Zpinch implosions.In our model the MHD plasma is considered to respond to a perturbation with exp at frequency ω+ik2⊥ρ2iΩi instead of frequency ω,where k2⊥ρ2i is the finite Larmor radius effects given from the general kinetic theory of magnetized plasma.Therefore linearized continuity and momentum equations include automatically the finite Larmor radius effects.Dispersion relation is derived,which includes the effects of a density discontinuity and the finite Larmor radius as well as a sheared flow that produces the KelvinHelmholtz instability.The dispersion equation is examined in three cases.The results indicate that the synergetic effect of sheared axial flow and the finite Larmor radius can mitigate both the RayleighTaylor instability and the hybrid RayleighTaylor/KelvinHelmholtz instability.Moreover,the synergetic mitigation effect is stronger than either of them acting separately.展开更多
文摘A hybrid model of MHD and kinetic theory is proposed to investigate the synergetic stabilizing effects of sheared axial flow and finite Larmor radius on the RayleighTaylor instability in Zpinch implosions.In our model the MHD plasma is considered to respond to a perturbation with exp at frequency ω+ik2⊥ρ2iΩi instead of frequency ω,where k2⊥ρ2i is the finite Larmor radius effects given from the general kinetic theory of magnetized plasma.Therefore linearized continuity and momentum equations include automatically the finite Larmor radius effects.Dispersion relation is derived,which includes the effects of a density discontinuity and the finite Larmor radius as well as a sheared flow that produces the KelvinHelmholtz instability.The dispersion equation is examined in three cases.The results indicate that the synergetic effect of sheared axial flow and the finite Larmor radius can mitigate both the RayleighTaylor instability and the hybrid RayleighTaylor/KelvinHelmholtz instability.Moreover,the synergetic mitigation effect is stronger than either of them acting separately.